Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
bioRxiv ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39005320

RESUMEN

Biomolecular condensates form via processes that combine phase separation and reversible associations of multivalent macromolecules. Condensates can be two- or multi-phase systems defined by coexisting dense and dilute phases. Here, we show that solution ions can partition asymmetrically across coexisting phases defined by condensates formed by intrinsically disordered proteins or homopolymeric RNA molecules. Our findings were enabled by direct measurements of the activities of cations and anions within coexisting phases of protein and RNA condensates. Asymmetries in ion partitioning between coexisting phases vary with protein sequence, condensate type, salt concentration, and ion type. The Donnan equilibrium set up by asymmetrical partitioning of solution ions generates interphase electric potentials known as Donnan and Nernst potentials. Our measurements show that the interphase potentials of condensates are of the same order of magnitude as membrane potentials of membrane-bound organelles. Interphase potentials quantify the degree to which microenvironments of coexisting phases are different from one another. Importantly, and based on condensate-specific interphase electric potentials, which are membrane-like potentials of membraneless bodies, we reason that condensates are mesoscale capacitors that store charge. Interphase potentials lead to electric double layers at condensate interfaces. This helps explain recent observations of condensate interfaces being electrochemically active.

2.
J Phys Chem A ; 128(28): 5684-5690, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38968601

RESUMEN

Water droplets are spraying into air using air as a nebulizing gas, and the droplets pass between two parallel metal plates with opposite charges. A high-speed camera records droplet trajectories in the uniform electric field, providing visual evidence for the Lenard effect, that is, smaller droplets are negatively charged whereas larger droplets are positively charged. By analyzing the velocities of the droplets between the metal plates, the charges on the droplets can be estimated. Some key observations include: (1) localized electric fields with intensities on the order of 109 V/m are generated, and charges are expected to jump (micro-lightening) between a positively charged larger droplet and the negatively charged smaller droplet as they separate; (2) the strength of the electric field is sufficiently powerful to ionize gases surrounding the droplets; and (3) observations in an open-air mass spectrometer reveal the presence of ions such as N2+, O2+, NO+, and NO2+. These findings provide new insight into the origins of some atmospheric ions and have implications for understanding ionization processes in the atmosphere and chemical transformations in water droplets, advancing knowledge in the field of aerosol science and water microdroplet chemistry.

3.
bioRxiv ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39026887

RESUMEN

We report the discovery that chemical reactions such as ATP hydrolysis can be catalyzed by condensates formed by intrinsically disordered proteins (IDPs), which themselves lack any intrinsic ability to function as enzymes. This inherent catalytic feature of condensates derives from the electrochemical environments and the electric fields at interfaces that are direct consequences of phase separation. The condensates we studied were capable of catalyzing diverse hydrolysis reactions, including hydrolysis and radical-dependent breakdown of ATP whereby ATP fully decomposes to adenine and multiple carbohydrates. This distinguishes condensates from naturally occurring ATPases, which can only catalyze the dephosphorylation of ATP. Interphase and interfacial properties of condensates can be tuned via sequence design, thus enabling control over catalysis through sequence-dependent electrochemical features of condensates. Incorporation of hydrolase-like synthetic condensates into live cells enables activation of transcriptional circuits that depend on products of hydrolysis reactions. Inherent catalytic functions of condensates, which are emergent consequences of phase separation, are likely to affect metabolic regulation in cells.

4.
Cell Rep ; 43(7): 114409, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944837

RESUMEN

Harsh environments in poorly perfused tumor regions may select for traits driving cancer aggressiveness. Here, we investigated whether tumor acidosis interacts with driver mutations to exacerbate cancer hallmarks. We adapted mouse organoids from normal pancreatic duct (mN10) and early pancreatic cancer (mP4, KRAS-G12D mutation, ± p53 knockout) from extracellular pH 7.4 to 6.7, representing acidic niches. Viability was increased by acid adaptation, a pattern most apparent in wild-type (WT) p53 organoids, and exacerbated upon return to pH 7.4. This led to increased survival of acid-adapted organoids treated with gemcitabine and/or erlotinib, and, in WT p53 organoids, acid-induced attenuation of drug effects. New genetic variants became dominant during adaptation, yet they were unlikely to be its main drivers. Transcriptional changes induced by acid and drug adaptation differed overall, but acid adaptation increased the expression of gemcitabine resistance genes. Thus, adaptation to acidosis increases cancer cell viability after chemotherapy.

5.
Transl Cancer Res ; 13(5): 2187-2207, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38881920

RESUMEN

Background: Lung adenocarcinoma (LUAD), a global leading cause of cancer deaths, remains inadequately addressed by current protein biomarkers. Our study focuses on developing a protein-based risk signature for improved prognosis of LUAD. Methods: We employed the least absolute shrinkage and selection operator (LASSO)-COX algorithm on The Cancer Genome Atlas database to construct a prognostic model incorporating six proteins (CD49B, UQCRC2, SMAD1, FOXM1, CD38, and KAP1). The model's performance was assessed using principal component, Kaplan-Meier (KM), and receiver operating characteristic (ROC) analysis, indicating strong predictive capability. The model stratifies LUAD patients into distinct risk groups, with further analysis revealing its potential as an independent prognostic factor. Additionally, we developed a predictive nomogram integrating clinicopathologic factors, aimed at assisting clinicians in survival prediction. Gene set enrichment analysis (GSEA) and examination of the tumor immune microenvironment were conducted, highlighting metabolic pathways in high-risk genes and immune-related pathways in low-risk genes, indicating varied immunotherapy sensitivity. Validation through immunohistochemistry from the Human Protein Atlas (HPA) database and immunofluorescence staining of clinical samples was performed, particularly focusing on CD38 expression. Results: Our six-protein model (CD49B, UQCRC2, SMAD1, FOXM1, CD38, KAP1) effectively categorized LUAD patients into high and low-risk groups, confirmed by principal component, KM, and ROC analyses. The model showed high predictive accuracy, with distinct survival differences between risk groups. Notably, CD38, traditionally seen as protective, was paradoxically associated with poor prognosis in LUAD, a finding supported by immunohistochemistry and immunofluorescence data. GSEA revealed that high-risk genes are enriched in metabolic pathways, while low-risk genes align with immune-related pathways, suggesting better immunotherapy response in the latter group. Conclusions: This study presented a novel prognostic protein model for LUAD, highlighting the CD38 expression paradox and enhancing our understanding of protein roles in lung cancer progression. It offered new clinical tools for prognosis prediction and provided assistance for future lung cancer pathogenesis research.

6.
Opt Express ; 32(11): 19133-19145, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859055

RESUMEN

Magnetorheological finishing (MRF) is a deterministic optical processing technique based on CCOS that achieves high removal efficiency and processing accuracy while reducing subsurface damage. This technique still suffers from multiple iterations of processing due to variations in removal efficiency and the inability to fully correct mid-frequency errors below the cut-off frequency of the removal function. For the above problems, this paper attempted to establish the error model of removal function efficiency change for predicting the change of MRF efficiency. Based on the analysis of the distribution of surface shape residuals under different machining paths, a process combining spiral scanning and raster scanning is proposed, which can realize the correction of surface shape and restrain the deterioration of mid-frequency errors. The experimental results show that when the low-frequency errors of fused silica element surface converge rapidly, by optimizing the machining removal coefficient and using the spiral scanning and raster scanning combined method, the PSD analysis results show that the mid-frequency errors of the combined process is lower than the initial value, which expands the process route for the MRF of high-precision optical elements.

7.
Opt Express ; 32(11): 19626-19644, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859093

RESUMEN

X-ray mirrors, which are essential for constructing synchrotron radiation light sources, are highly required for full-range spatial wavelength errors. This paper investigated power-law non-Newtonian fluids and pointed out that both three-body removal and shear removal existed in the shear thickening polishing process. Subsequently, this paper calculates the shear force of the power-law non-Newtonian fluid polishing fluid in polishing the surface with different frequency errors. It establishes an MRR model of shear thickening polishing in the frequency domain by combining it with the Archard equation. Then, this model is also applied to optimize the polishing fluid formulation and processing parameters. Finally, the removal effect of the optimized polishing fluid on the mid-frequency ripple error is experimentally verified. On Ф50 mm monocrystalline silicon, the removal of mid-frequency ripple error with a spatial wavelength of 1 mm was achieved by shear thickening polishing technique while converging the surface roughness to 0.14 nm. Finally, the experimental results were applied to monocrystalline silicon with a length of 500 mm. This work provides a new research idea for the existing shear thickening polishing process. It provides theoretical and technical support for removing the mid- and high-frequency errors in high-precision X-ray mirrors.

8.
Sci Adv ; 10(18): eadn3448, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701211

RESUMEN

Despite the physiological and pathophysiological significance of microenvironmental gradients, e.g., for diseases such as cancer, tools for generating such gradients and analyzing their impact are lacking. Here, we present an integrated microfluidic-based workflow that mimics extracellular pH gradients characteristic of solid tumors while enabling high-resolution live imaging of, e.g., cell motility and chemotaxis, and preserving the capacity to capture the spatial transcriptome. Our microfluidic device generates a pH gradient that can be rapidly controlled to mimic spatiotemporal microenvironmental changes over cancer cells embedded in a 3D matrix. The device can be reopened allowing immunofluorescence analysis of selected phenotypes, as well as the transfer of cells and matrix to a Visium slide for spatially resolved analysis of transcriptional changes across the pH gradient. This workflow is easily adaptable to other gradients and multiple cell types and can therefore prove invaluable for integrated analysis of roles of microenvironmental gradients in biology.


Asunto(s)
Neoplasias , Fenotipo , Microambiente Tumoral , Humanos , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Línea Celular Tumoral , Movimiento Celular , Concentración de Iones de Hidrógeno , Quimiotaxis , Técnicas Analíticas Microfluídicas
9.
Small Methods ; : e2301768, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738735

RESUMEN

The synthesis of high-entropy alloys (HEAs) with ultra-small particle sizes has long been a challenging task. The complex and time-consuming synthesis process hinders their practical application and widespread adoption. This study presents the novel synthesis of TiO2 nanoparticles loaded with a quinary high-entropy alloy through flame spray pyrolysis (FSP) for the first time. The extremely fast heating rate of flame combustion makes the precursor fast pyrolysis gasification, high temperature in the flame field promotes the metal vapor mixing uniformly, and the fast quenching process can reduce the particle aggregation sintering, the ultra-small particle size of HEA firmly attached to the TiO2 surface. The catalysts prepared via this gas-to-particle pathway exhibit excellent performance in CO2 hydrogenation, achieving a conversion rate of 62% at 450 °C, and maintaining their activity for over 220 h without significant particle agglomeration. This finding provides valuable insights for the future design of catalytically active materials with enhanced activity and long-term stability.

10.
Nat Microbiol ; 9(4): 1021-1035, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553608

RESUMEN

Gas vesicles (GVs) are microbial protein organelles that support cellular buoyancy. GV engineering has multiple applications, including reporter gene imaging, acoustic control and payload delivery. GVs often cluster into a honeycomb pattern to minimize occupancy of the cytosol. The underlying molecular mechanism and the influence on cellular physiology remain unknown. Using genetic, biochemical and imaging approaches, here we identify GvpU from Priestia megaterium as a protein that regulates GV clustering in vitro and upon expression in Escherichia coli. GvpU binds to the C-terminal tail of the core GV shell protein and undergoes a phase transition to form clusters in subsaturated solution. These properties of GvpU tune GV clustering and directly modulate bacterial fitness. GV variants can be designed with controllable sensitivity to GvpU-mediated clustering, enabling design of genetically tunable biosensors. Our findings elucidate the molecular mechanisms and functional roles of GV clustering, enabling its programmability for biomedical applications.


Asunto(s)
Orgánulos , Proteínas , Bacterias
11.
Sci Data ; 11(1): 210, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360815

RESUMEN

Exosomes play a crucial role in intercellular communication and can be used as biomarkers for diagnostic and therapeutic clinical applications. However, systematic studies in cancer-associated exosomal nucleic acids remain a big challenge. Here, we developed ExMdb, a comprehensive database of exosomal nucleic acid biomarkers and disease-gene associations curated from published literature and high-throughput datasets. We performed a comprehensive curation of exosome properties including 4,586 experimentally supported gene-disease associations, 13,768 diagnostic and therapeutic biomarkers, and 312,049 nucleic acid subcellular locations. To characterize expression variation of exosomal molecules and identify causal factors of complex diseases, we have also collected 164 high-throughput datasets, including bulk and single-cell RNA sequencing (scRNA-seq) data. Based on these datasets, we performed various bioinformatics and statistical analyses to support our conclusions and advance our knowledge of exosome biology. Collectively, our dataset will serve as an essential resource for investigating the regulatory mechanisms of complex diseases and improving the development of diagnostic and therapeutic biomarkers.


Asunto(s)
Conjuntos de Datos como Asunto , Exosomas , Neoplasias , Ácidos Nucleicos , Humanos , Biomarcadores , Biomarcadores de Tumor , Biología Computacional , Exosomas/genética , Neoplasias/diagnóstico , Neoplasias/genética , Ácidos Nucleicos/genética , Bases de Datos Genéticas
12.
Appl Opt ; 62(36): 9446-9453, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38108768

RESUMEN

A dual aspheric integrated beam shaper suitable for a high-power laser situation has been designed and realized. The model for this lens was derived theoretically and the performance was evaluated using a detailed simulation. The ultrasonic vibration assisted cutting and the high-precision grinding and polishing technology were used for the processing. The surface accuracy was less than 200 nm measured with a profiler, and the roughness was smaller than 20 nm with the help of the white light interferometer. Shaping experiments were carried out, which verified that the Gaussian beam has uniform intensity distribution with a uniformity of 85.13% in the near field and converges to a point in the far field, which is exactly as expected. It thus provides an actual selection for high-power laser shaping.

13.
Int J Chron Obstruct Pulmon Dis ; 18: 2985-2997, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107596

RESUMEN

Purpose: Vitamins and carotenoids are essential in preventing and treating chronic obstructive pulmonary disease (COPD). This study investigated the associations between serum vitamins, carotenoids, and COPD in adults aged ≥ 40 years in the United States. Methods: We selected 3487 participants aged ≥40 from the NHANES (2017-2018) and used demographic analysis, sensitivity tests, and different weighted multivariate regression models to investigate the relationship between serum vitamins, carotenoids, and COPD. Results: Subjects in the highest tertile of serum vitamin C, vitamin E (α-tocopherol), α-carotene, trans-ß-carotene, and cis-ß-carotene had a 50%, 35%, 51%, 54%, and 51% lower risk of COPD than those in the lowest tertile (P for trend: P=0.0005, <0.0001, 0.0054, 0.0066, and 0.0049). Unfortunately, no significant correlation was found for serum vitamin D levels. Conclusion: Our analysis of nationally representative data from 3487 participants showed that serum levels of vitamin C, vitamin E (α-tocopherol), α-carotene, and ß-carotene were negatively associated with the incidence of COPD in adults over 40 years of age in the US The findings highlighted the importance of antioxidant vitamins and carotenoids in respiratory health, while the data showed no significant correlation between vitamin D (25-OHD) and the incidence of COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , beta Caroteno , Adulto , Humanos , Estados Unidos/epidemiología , Persona de Mediana Edad , alfa-Tocoferol , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Encuestas Nutricionales , Carotenoides , Antioxidantes , Vitaminas , Vitamina E , Vitamina A , Ácido Ascórbico , Vitamina D
14.
medRxiv ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37986939

RESUMEN

Introduction: Social network strategies, in which social networks are utilized to influence individuals or communities, are increasingly being used to deliver human immunodeficiency virus (HIV) interventions to key populations. We summarized and critically assessed existing research on the effectiveness of social network strategies in promoting HIV self-testing (HIVST). Methods: Using search terms related to social network interventions and HIVST, we searched five databases for trials published between January 1st, 2010, and June 30th, 2023. Outcomes included uptake of HIV testing, HIV seroconversion, and linkage to antiretroviral therapy (ART) or HIV Care. We used network meta-analysis to assess the uptake of HIV testing through social network strategies compared with control methods. A pairwise meta-analysis of studies with a comparison arm that reported outcomes was performed to assess relative risks (RR) and their corresponding 95% confidence intervals (CI). Results and discussion: Among the 3,745 manuscripts identified, 33 studies fulfilled the inclusion criteria, including one quasi-experimental study, 17 RCTs and 15 observational studies. Networks HIVST testing was organized by peers (distributed to known peers, 15 studies), partners (distributed to their sexual partners, 10 studies), and peer educators (distributed to unknown peers, 8 studies). The results showed that all of the three social network distribution strategies enhanced the uptake of HIV testing compared to standard facility-based testing. Among social networks, peer distribution had the highest uptake of HIV testing (79% probability, SUCRA 0.92), followed by partner distribution (72% probability, SUCRA 0.71), and peer educator distribution (66% probability, SUCRA 0.29). Pairwise meta-analysis showed that peer distribution (RR 2.29, 95% CI 1.54-3.39, 5 studies) and partner distribution (RR 1.45, 95% CI 1.05-2.02, 7 studies) also increased the probability of detecting HIV reactivity during testing within the key population when compared to the control. Linkage to ART or HIV Care remained comparable to facility-based testing across the three HIVST distribution strategies. Conclusions: Network-based HIVST distribution is considered effective in augmenting HIV testing rates and reaching marginalized populations compared to facility-based testing. These strategies can be integrated with the existing HIV care services, to fill the testing gap among key populations globally.PROSPERO Number: CRD42022361782.

15.
Device ; 1(1)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37872891

RESUMEN

We report a simple droplet fluidic point-of-care test (POCT) that uses gravity to manipulate the sequence, timing, and motion of droplets on a surface. To fabricate this POCT, we first developed a surface coating toolbox of nine different coatings with three levels of wettability and three levels of slipperiness that can be independently tailored. We then fabricated a device that has interconnected fluidic elements-pumps, flow resistors and flow guides-on a highly slippery solid surface to precisely control the timing and sequence of motion of multiple droplets and their interactions on the surface. We then used this device to carry out a multi-step enzymatic assay of a clinically relevant analyte-lactate dehydrogenase (LDH)-to demonstrate the application of this technology for point-of-care diagnosis.

16.
bioRxiv ; 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37904914

RESUMEN

Control of the electrochemical environment in living cells is typically attributed to ion channels. Here we show that the formation of biomolecular condensates can modulate the electrochemical environment in cells, which affects processes globally within the cell and interactions of the cell with its environment. Condensate formation results in the depletion or enrichment of certain ions, generating intracellular ion gradients. These gradients directly affect the electrochemical properties of a cell, including the cytoplasmic pH and hyperpolarization of the membrane potential. The modulation of the electrochemical equilibria between the intra- and extra-cellular environments by biomolecular condensates governs charge-dependent uptake of small molecules by cells, and thereby directly influences bacterial survival under antibiotic stress. The shift of the intracellular electrochemical equilibria by condensate formation also drives a global change of the gene expression profile. The control of the cytoplasmic environment by condensates is correlated with their volume fraction, which can be highly variable between cells due to the stochastic nature of gene expression at the single cell level. Thus, condensate formation can amplify cell-cell variability of the environmental effects induced by the shift of cellular electrochemical equilibria. Our work reveals new biochemical functions of condensates, which extend beyond the biomolecules driving and participating in condensate formation, and uncovers a new role of biomolecular condensates in cellular regulation.

17.
Life Sci ; 333: 122172, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37832632

RESUMEN

AIMS: Cachexia, a metabolic syndrome, affects 21 % of patients suffering from ischemic encephalopathy. However, the specific mechanism and prevention measures are still unclear. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) have been proven to reduce inflammatory cytokine levels during ischemic events, but whether they have a protective effect against cachexia after hypoxic-ischemic brain damage (HIBD) remains unclear. MAIN METHODS: C57BL/6J wild-type and mfat-1 transgenic male mice were treated with and without HIBD. One day after HIBD, the epididymal white fat, gastrocnemius muscle and hypothalamus were weighed and analyzed the phenotypic changes. RNA sequencing was applied to gastrocnemius muscle to identify differential genes and pathways in HIBD groups. The effect of HPA axis on cachexia post-HIBD was examined via adrenalectomy, dexamethasone (0.1 mg/kg), and corticosterone injection (100 mg/kg). KEY FINDINGS: The results showed that the incidence of cachexia in mfat-1 mice, which produce high proportion of n-3 PUFAs, was significantly lower than that in wild-type mice post-HIBD. Cachexia-related factors, such as inflammation, muscle atrophy and lipid metabolism were significantly improved in mfat-1 HIBD. RNA sequencing revealed that catabolic and proteasome pathways were significantly downregulated. In hypothalamus, inflammatory cytokines, lipid peroxidation levels were reduced. Corticosterone, glucocorticoid receptor, and dexamethasone suppression test all showed that mfat-1 improved the dysfunction of the HPA axis post-HIBD. The present study elucidated for the first time that mfat-1 reduced HIBD-induced hyperactivation of the HPA axis in mice by reducing inflammation and oxidative stress and contributed to the reduction of metabolic imbalance in peripheral tissues. SIGNIFICANCE: Our study provides mechanistic information for the development of intervention strategies to prevent cachexia.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Hipoxia-Isquemia Encefálica , Humanos , Ratones , Animales , Masculino , Sistema Hipotálamo-Hipofisario/metabolismo , Caquexia/etiología , Caquexia/prevención & control , Caquexia/metabolismo , Corticosterona/metabolismo , Ratones Endogámicos C57BL , Sistema Hipófiso-Suprarrenal/metabolismo , Ratones Transgénicos , Hipotálamo/metabolismo , Hipoxia-Isquemia Encefálica/metabolismo , Inflamación/metabolismo , Dexametasona/metabolismo , Animales Recién Nacidos , Encéfalo/metabolismo
18.
J Ovarian Res ; 16(1): 200, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817210

RESUMEN

BACKGROUND: Patients with epithelial ovarian carcinoma (EOC) are usually diagnosed at an advanced stage with tumour cell invasion. However, identifying the underlying molecular mechanisms and biomarkers of EOC proliferation and invasion remains challenging. RESULTS: Herein, we explored the relationship between tumour microenvironment (TME) reprogramming and tissue invasion based on single-cell RNA sequencing (scRNA-seq) datasets. Interestingly, hypoxia, oxidative phosphorylation (OXPHOS) and glycolysis, which have biologically active trajectories during epithelial mesenchymal transition (EMT), were positively correlated. Moreover, energy metabolism and anti-apoptotic activity were found to be critical contributors to intratumor heterogeneity. In addition, HMGA1, EGR1 and RUNX1 were found to be critical drivers of the EMT process in EOC. Experimental validation revealed that suppressing EGR1 expression inhibited tumour cell invasion, significantly upregulated the expression of E-cadherin and decreased the expression of N-cadherin. In cell components analysis, cancer-associated fibroblasts (CAFs) were found to significantly contribute to immune infiltration and tumour invasion, and the accumulation of CAFs was associated with poorer patient survival. CONCLUSION: We revealed the molecular mechanism and biomarkers of tumour invasion and TME reprogramming in EOC, which provides effective targets for the suppression of tumour invasion.


Asunto(s)
Neoplasias Ováricas , Femenino , Humanos , Carcinoma Epitelial de Ovario/genética , Neoplasias Ováricas/patología , Microambiente Tumoral/genética , Transición Epitelial-Mesenquimal/genética , Biomarcadores , Línea Celular Tumoral
19.
Biomed Pharmacother ; 167: 115507, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722192

RESUMEN

Phenylethanoid glycosides derived from Cistanche deserticola (PhGs) are plant-derived natural medicinal compounds that occur in many medicinal plants. This study aims to investigate whether PhGs treatment improves the stroke and its potential mechanisms. Adult male C57BL/6 J mice were administrated PhGs once daily for 7 days after MCAO surgery. The neurological score, and catwalk were evaluated on Day 1, 3 and 7 after ischemic stroke. Furthermore, triphenyl-2,3,5-tetrazoliumchloride (TTC) and hematoxylin-eosin (H&E) staining were used for evaluating the infarct volume and neuronal restoration. The effects of PhGs on NSCs proliferation were investigated in vitro and in vivo. Western blot was used to detect the proteins of Wnt/ß-catenin signaling pathway. This study found that PhGs effectively improved the neurological functions in ischemic stroke mice. TTC and H&E staining demonstrated that PhGs not only reduced infarct volume, but also improved neuronal restoration. The immunohistochemistry and 5-Ethynyl-2-deoxyuridine (EdU) incorporation assays revealed that PhGs promoted the proliferation of neural stem cells (NSCs) in subventricular zone (SVZ). In addition, transcriptome analysis of NSCs showed that the Wnt/ß-catenin signaling pathway was involved in the PhGs induced NSCs proliferation. Importantly, the related proteins in the Wnt/ß-catenin signaling pathway were changed after PhGs treatment, including ß-catenin, Wnt3a, GSK-3ß, c-Myc. PhGs treatment improved the stroke through enhancing endogenous NSCs proliferation via activating Wnt/ß-catenin signaling pathway. Due to its effect on the proliferation of NSCs, PhGs are a potential adjuvant therapeutic drug for post-stroke treatment.

20.
Chem ; 9(6): 1594-1609, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37546704

RESUMEN

Biomolecular condensates mediate diverse cellular processes. The density transition process of condensate formation results in selective partitioning of molecules, which define a distinct chemical environment within the condensates. However, the fundamental features of the chemical environment and the mechanisms by which such environment can contribute to condensate functions have not been revealed. Here, we report that an electric potential gradient, thereby an electric field, is established at the liquid-liquid interface between the condensate and the bulk environment due to the density transition of ions and molecules brought about by phase separation. We find that the interface of condensates can drive spontaneous redox reactions in vitro and in living cells. Our results uncover a fundamental physicochemical property of the interface of condensates and the mechanism by which the interface can modulate biochemical activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...