Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 10(8)2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34439429

RESUMEN

Temperature, being the main factor that has an influence on insects, causes changes in their development, reproduction, winter survival, life cycles, migration timing, and population dynamics. The effects of stress caused by a temperature increase on insects may depend on many factors, such as the frequency, amplitude, duration of the stress, sex, or the developmental stage of the insect. The aim of the study was to determine the differences in the enzymatic activity of nymphs and adult aphids Aphis pomi, Macrosiphum rosae and Cinara cupressi, and changes in their response to a temperature increase from 20 to 28 °C. The activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), ß-glucosidase, polyphenol oxidase (PPO) and peroxidase (POD)) in aphid tissues was analysed for three constant temperatures. The results of our research showed that the enzymatic activity of aphids (measured as the activity of antioxidant, detoxifying and oxidoreductive enzymes) was mainly determined by the type of morph. We observed a strong positive correlation between the activity of the detoxifying and oxidoreductive enzymes and aphids' development, and a negative correlation between the activity of the antioxidant enzymes and aphids' development. Moreover, the study showed that an increase in temperature caused changes in enzyme activity (especially SOD, CAT and ß-glucosidase), which was highest at 28 °C, in both nymphs and adults. Additionally, a strong positive correlation between metabolic activity (heat flow measured by microcalorimeter) and longevity was observed, which confirmed the relationship between these characteristics of aphids. The antioxidant enzyme system is more efficient in aphid nymphs, and during aphid development the activity of antioxidant enzymes decreases. The antioxidant enzyme system in aphids appears to deliver effective protection for nymphs and adults under stressful conditions, such as high temperatures.

2.
Insects ; 12(5)2021 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-34066736

RESUMEN

The hemp aphid Phorodon cannabis Passerini is a well- known (Asia, Europe) or newly emerging (North America) insect. It is a monophagous insect pest causing considerable damage in field and glasshouse cultivations. The aim of this work was to study the effects of meteorological (temperature) and agronomical (herbicide) factors on the biology of the hemp aphid. In one experiment, hemp plants were kept at constant temperatures ranging from 20 to 30 °C, and aphid survival and fecundity were measured. In a related experiment conducted at 20 °C, plants were treated with field-appropriate rates of a selective graminicide containing quizalofop-P-tefuryl (40 gL-1, 4.38%, HRAC group 1), commonly used to control weeds in hemp, and aphid enzyme activity was measured in addition to population parameters. We found that hemp aphids could live, feed and reproduce within the whole studied range of temperatures, demonstrating its great evolutionary plasticity. However, the optimal temperature for development was 25 °C, at which the insect lived and reproduced for 25 and 15 days, respectively, with an average fecundity of 7.5 nymphs per reproduction day. The herbicide treatment increased the activity of superoxide dismutase (SOD), catalase (CAT), ß-glucosidase, S-glutathione transferase (GST), oxidoreductive peroxidase (POD), and polyphenol oxidase (PPO) in the aphids, but only on certain days after treatment, which indicates a mild stress in aphid tissues, related to a higher reproduction and changed feeding behavior; aphids moved from the actively growing tips compared to untreated plants. The results of these experiments are discussed in terms of the impact on the future management of this pest.

3.
Biology (Basel) ; 10(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071458

RESUMEN

Thermal stress in living organisms causes an imbalance between the processes of creating and neutralizing reactive oxygen species (ROS). The work aims to explain changes in the aphid-host plant interaction due to an increase in temperature. Tests were carried out at three constant temperatures (20, 25, or 28 °C). Firstly, changes in development of Macrosiphum rosae were determined. Secondly, the activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), ß-glucosidase, polyphenol oxidase (PPO), and peroxidase (POD)) in aphid M. rosae tissues and host plant were analyzed at all temperatures. An increase in temperature to 28 °C had a negative effect on the biology of M. rosae by shortening the period of reproduction and longevity, thus reducing the demographic parameters and fecundity. Two stages of the aphid's defensive response to short-term (24-96 h) and long-term (2 weeks) thermal stress were observed. Aphid defense responses varied considerably with temperature and were highest at 28 °C. In turn, for the plants, which were exposed to both abiotic stress caused by elevated temperature and biotic stress caused by aphid feeding, their enzymatic defense was more effective at 20 °C, when enzyme activities at their highest were observed.

4.
Insects ; 11(7)2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32664609

RESUMEN

Climate change, and in particular the increase in temperature we are currently observing, can affect herbivorous insects. Aphids, as poikilothermic organisms, are directly exposed to temperature increases that influence their metabolism. Heat stress causes disturbances between the generations and the neutralization of reactive oxygen species (ROS). The aim of this work is focused on explaining how the aphid, using the example of Aphis pomi, responds to abiotic stress caused by temperature increase. The experiment was carried out under controlled conditions at three temperatures: 20, 25, and 28 °C. In the first stage, changes in the activity of enzymatic markers (superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), ß-glucosidase, polyphenol oxidase (PPO), and peroxidase (POD)) were determined in aphid tissues, at each temperature. In the second stage, microcalorimetry monitored changes in heat emitted by aphids, at each temperature. Our results showed that A. pomi defense responses varied depending on temperature and were highest at 28 °C. The flexible activity of enzymes and increase in the metabolic rate played the role of adaptive mechanisms and ran more effectively at higher temperatures. The A. pomi thus protected itself against ROS excessive induction and the aphids were able to respond quickly to environmental stress.

5.
Insects ; 11(8)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722420

RESUMEN

Despite many studies of the aging process, questions about key factors ensuring longevity have not yet found clear answers. Temperature seems to be one of the most important factors regulating lifespan. However, the genetic background may also play a key role in determining longevity. The aim of this study was to investigate the relationship between the temperature, genetic background (fruit fly origin), and metabolic rate on lifespan. Experiments were performed with the use of the wild type Drosophila melanogaster fruit flies originating from Australia, Canada, and Benin and the reference OregonR strain. The metabolic rate of D. melanogaster was measured at 20 °C, 25 °C, and 28 °C in an isothermal calorimeter. We found a strong negative relationship between the total heat flow and longevity. A high metabolic rate leads to increased aging in males and females in all strains. Furthermore, our results showed that temperature has a significant effect on fecundity and body weight. We also showed the usefulness of the isothermal calorimetry method to study the effect of environmental stress conditions on the metabolic activity of insects. This may be particularly important for the forecasting of impact of global warming on metabolic activity and lifespan of various insects.

6.
Insects ; 11(3)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121261

RESUMEN

Aphids are herbivores carrying the status of major pests for crops and ornamental plants. The many specific biological features of aphids allow them to survive unfavorable environmental conditions. As for other insects, a predominant strategy for aphids surviving winter, is laying diapausing eggs. During diapause, the expression of development may vary between species. Most of the insects stop growing during diapause; however, there is limited information about this process. We immunostained the embryos of aphids in order to detect cell division during diapause. Here, for the first time, we present that two species of aphids belonging to Cinara grow and develop throughout the duration of the winter diapause. Our results showed that the "resting stage" does not occur in embryos of these aphid species. The embryo of C. cupressi and C. juniperi undergoes a type of diapause, with slow growth. It seems that this feature is conducive to the rapid development of embryos in the egg, which may be another specific feature for aphid biology of overwintering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA