Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Cancer Res ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39321207

RESUMEN

PURPOSE: CLDN18.2 is a surface membrane protein crucial for maintaining tight junctions in gastric mucosal cells and is highly expressed in gastric, esophageal, and pancreatic cancers. Thus, CLDN18.2 is suited for exploration as a clinical target for chimeric antigen receptor T-cell (CAR-T) therapy in these indications. Although CAR-T therapies show promise, a challenge faced in their development for solid tumors is the immunosuppressive tumor microenvironment, often characterized by the presence of immune and stromal cells secreting high levels of transforming growth factor beta (TGF-ß). Addition of TGF-ß armoring can potentially expand CAR-T activity in solid tumors. We report on the preclinical development of a CLDN18.2-targeting CAR-T showing effectiveness in CLDN18.2-positive gastric, esophageal, and pancreatic tumor models. EXPERIMENTAL DESIGN: The lead lentivirus product contains a unique single-chain variable fragment, CD28 and CD3z costimulatory and signaling domains, and dominant negative TGF-ß receptor armoring, enhancing targeting and safety and counteracting suppression. We developed a shortened cell manufacturing process to enhance the potency of the final product, AZD6422. RESULTS: AZD6422 exhibited significant antitumor activity and tolerability in multiple patient-derived tumor xenograft models with various CLDN18.2 and TGF-ß levels, as determined by immunohistochemistry. Efficacy of armored CAR-Ts in tumor models with elevated TGF-ß was increased in vitro and in vivo. In vitro restimulation assays established greater persistence and cytolytic function of AZD6422 compared with a traditionally manufactured CAR-T. CONCLUSIONS: AZD6422 was safe and efficacious in patient-derived, CLDN18.2-positive murine models of gastrointestinal cancers. Our data support further clinical development of AZD6422 for patients with these cancers.

2.
MAbs ; 16(1): 2362775, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38899735

RESUMEN

Over the past two decades, therapeutic antibodies have emerged as a rapidly expanding domain within the field of biologics. In silico tools that can streamline the process of antibody discovery and optimization are critical to support a pipeline that is growing more numerous and complex every year. High-quality structural information remains critical for the antibody optimization process, but antibody-antigen complex structures are often unavailable and in silico antibody docking methods are still unreliable. In this study, DeepAb, a deep learning model for predicting antibody Fv structure directly from sequence, was used in conjunction with single-point experimental deep mutational scanning (DMS) enrichment data to design 200 potentially optimized variants of an anti-hen egg lysozyme (HEL) antibody. We sought to determine whether DeepAb-designed variants containing combinations of beneficial mutations from the DMS exhibit enhanced thermostability and whether this optimization affected their developability profile. The 200 variants were produced through a robust high-throughput method and tested for thermal and colloidal stability (Tonset, Tm, Tagg), affinity (KD) relative to the parental antibody, and for developability parameters (nonspecific binding, aggregation propensity, self-association). Of the designed clones, 91% and 94% exhibited increased thermal and colloidal stability and affinity, respectively. Of these, 10% showed a significantly increased affinity for HEL (5- to 21-fold increase) and thermostability (>2.5C increase in Tm1), with most clones retaining the favorable developability profile of the parental antibody. Additional in silico tests suggest that these methods would enrich for binding affinity even without first collecting experimental DMS measurements. These data open the possibility of in silico antibody optimization without the need to predict the antibody-antigen interface, which is notoriously difficult in the absence of crystal structures.


Asunto(s)
Afinidad de Anticuerpos , Muramidasa , Muramidasa/química , Muramidasa/inmunología , Muramidasa/genética , Estabilidad Proteica , Humanos , Antígenos/inmunología , Antígenos/química , Animales , Simulación por Computador
3.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966111

RESUMEN

Prostate cancer is generally considered an immunologically "cold" tumor type that is insensitive to immunotherapy. Targeting surface antigens on tumors through cellular therapy can induce a potent antitumor immune response to "heat up" the tumor microenvironment. However, many antigens expressed on prostate tumor cells are also found on normal tissues, potentially causing on-target, off-tumor toxicities and a suboptimal therapeutic index. Our studies revealed that six-transmembrane epithelial antigen of prostate-2 (STEAP2) was a prevalent prostate cancer antigen that displayed high, homogeneous cell surface expression across all stages of disease with limited distal normal tissue expression, making it ideal for therapeutic targeting. A multifaceted lead generation approach enabled development of an armored STEAP2 chimeric antigen receptor T cell (CAR-T) therapeutic candidate, AZD0754. This CAR-T product was armored with a dominant-negative TGF-ß type II receptor, bolstering its activity in the TGF-ß-rich immunosuppressive environment of prostate cancer. AZD0754 demonstrated potent and specific cytotoxicity against antigen-expressing cells in vitro despite TGF-ß-rich conditions. Further, AZD0754 enforced robust, dose-dependent in vivo efficacy in STEAP2-expressing cancer cell line-derived and patient-derived xenograft mouse models, and exhibited encouraging preclinical safety. Together, these data underscore the therapeutic tractability of STEAP2 in prostate cancer as well as build confidence in the specificity, potency, and tolerability of this potentially first-in-class CAR-T therapy.


Asunto(s)
Neoplasias de la Próstata , Receptores Quiméricos de Antígenos , Masculino , Humanos , Ratones , Animales , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Inmunoterapia Adoptiva , Neoplasias de la Próstata/patología , Linfocitos T , Factor de Crecimiento Transformador beta/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Microambiente Tumoral , Oxidorreductasas/metabolismo
4.
MAbs ; 15(1): 2152526, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36476037

RESUMEN

To combat the COVID-19 pandemic, potential therapies have been developed and moved into clinical trials at an unprecedented pace. Some of the most promising therapies are neutralizing antibodies against SARS-CoV-2. In order to maximize the therapeutic effectiveness of such neutralizing antibodies, Fc engineering to modulate effector functions and to extend half-life is desirable. However, it is critical that Fc engineering does not negatively impact the developability properties of the antibodies, as these properties play a key role in ensuring rapid development, successful manufacturing, and improved overall chances of clinical success. In this study, we describe the biophysical characterization of a panel of Fc engineered ("TM-YTE") SARS-CoV-2 neutralizing antibodies, the same Fc modifications as those found in AstraZeneca's Evusheld (AZD7442; tixagevimab and cilgavimab), in which the TM modification (L234F/L235E/P331S) reduce binding to FcγR and C1q and the YTE modification (M252Y/S254T/T256E) extends serum half-life. We have previously shown that combining both the TM and YTE Fc modifications can reduce the thermal stability of the CH2 domain and possibly lead to developability challenges. Here we show, using a diverse panel of TM-YTE SARS-CoV-2 neutralizing antibodies, that despite lowering the thermal stability of the Fc CH2 domain, the TM-YTE platform does not have any inherent developability liabilities and shows an in vivo pharmacokinetic profile in human FcRn transgenic mice similar to the well-characterized YTE platform. The TM-YTE is therefore a developable, effector function reduced, half-life extended antibody platform.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Humanos , SARS-CoV-2/genética , Pandemias , Anticuerpos Neutralizantes
5.
J Chromatogr A ; 1679: 463385, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-35933770

RESUMEN

Protein A chromatography with a high salt wash usually leads to robust clearance of host cell proteins (HCPs) in most recombinant monoclonal antibodies (mAbs), but a small subset of recalcitrant mAbs show significant HCP copurification. In this study, we carried out systematic studies using 4 different mAbs to explore the HCP copurification mechanism. HCP identification results revealed that the 3 high-HCP mAbs had many common HCPs which do not copurify with the low-HCP mAb, suggesting a similar mechanism is at play. Through wash evaluation, surface patch analysis, chain-swapping, domain evaluation, and structure-guided mutations, several charged residues in each mAb were found which correlated with HCP copurification. Surprisingly, these residues are also critical for self-association propensity. We observed an inverse correlation between diffusion interaction parameter and HCP copurification. Each of the high-HCP mAbs could form dynamic clusters consisting of 3∼6 mAb molecules. Therefore, a mAb cluster can exhibit higher net positive charges on the order of 3 to 6, compared with the individual mAb. In Protein A chromatography, high-HCP mAbs had elution tailing which contained high level of HCPs. Addition of Arginine-HCl or point mutations preventing cluster formation effectively reduced HCP copurification and elution tailing. Based on these results, we propose a novel HCP-copurification mechanism that formation of mAb clusters strengthens charge-charge interactions with HCPs and thus compromises HCP removal by Protein A chromatography. Besides arginine, histidine under acidic pH conditions prevented cluster formulation and resulted in effective HCP removal. Finally, structure-guided protein engineering and solution screening by using cluster size as indicator are useful tools for managing mAbs with high-HCP issues.


Asunto(s)
Anticuerpos Monoclonales , Proteína Estafilocócica A , Animales , Arginina , Células CHO , Cromatografía de Afinidad , Cricetinae , Cricetulus , Proteínas Recombinantes
6.
Commun Biol ; 4(1): 1048, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34497355

RESUMEN

In a biologic therapeutic landscape that requires versatility in targeting specificity, valency and half-life modulation, the monomeric Fc fusion platform holds exciting potential for the creation of a class of monovalent protein therapeutics that includes fusion proteins and bispecific targeting molecules. Here we report a structure-guided approach to engineer monomeric Fc molecules to adapt multiple versions of half-life extension modifications. Co-crystal structures of these monomeric Fc variants with Fc neonatal receptor (FcRn) shed light into the binding interactions that could serve as a guide for engineering the half-life of antibody Fc fragments. These engineered monomeric Fc molecules also enabled the generation of a novel monovalent bispecific molecular design, which translated the FcRn binding enhancement to improvement of in vivo serum half-life.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Fragmentos Fc de Inmunoglobulinas/metabolismo , Receptores Fc/metabolismo , Animales , Semivida , Antígenos de Histocompatibilidad Clase I/farmacología , Humanos , Fragmentos Fc de Inmunoglobulinas/farmacología , Ratones , Ratones Transgénicos , Ingeniería de Proteínas
8.
Sci Transl Med ; 13(590)2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883272

RESUMEN

Cardiovascular disease (CVD) is the leading global cause of death, and treatments that further reduce CV risk remain an unmet medical need. Epidemiological studies have consistently identified low high-density lipoprotein cholesterol (HDL-C) as an independent risk factor for CVD, making HDL elevation a potential clinical target for improved CVD resolution. Endothelial lipase (EL) is a circulating enzyme that regulates HDL turnover by hydrolyzing HDL phospholipids and driving HDL particle clearance. Using MEDI5884, a first-in-class, EL-neutralizing, monoclonal antibody, we tested the hypothesis that pharmacological inhibition of EL would increase HDL-C by enhancing HDL stability. In nonhuman primates, MEDI5884 treatment resulted in lasting, dose-dependent elevations in HDL-C and circulating phospholipids, confirming the mechanism of EL action. We then showed that a favorable lipoprotein profile of elevated HDL-C and reduced low-density lipoprotein cholesterol (LDL-C) could be achieved by combining MEDI5884 with a PCSK9 inhibitor. Last, when tested in healthy human volunteers, MEDI5884 not only raised HDL-C but also increased HDL particle numbers and average HDL size while enhancing HDL functionality, reinforcing EL neutralization as a viable clinical approach aimed at reducing CV risk.


Asunto(s)
Lipoproteínas HDL , Proproteína Convertasa 9 , Animales , Anticuerpos Monoclonales , HDL-Colesterol , Lipasa , Primates
9.
Sci Rep ; 10(1): 17257, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057063

RESUMEN

Neuregulin protein 1 (NRG1) is a large (> 60-amino-acid) natural peptide ligand for the ErbB protein family members HER3 and HER4. We developed an agonistic antibody modality, termed antibody ligand mimetics (ALM), by incorporating complex ligand agonists such as NRG1 into an antibody scaffold. We optimized the linker and ligand length to achieve native ligand activity in HEK293 cells and cardiomyocytes derived from induced pluripotent stem cells (iPSCs) and used a monomeric Fc-ligand fusion platform to steer the ligand specificity toward HER4-dominant agonism. With the help of selectivity engineering, these enhanced ALM molecules can provide an antibody scaffold with increased receptor specificity and the potential to greatly improve the pharmacokinetics, stability, and downstream developability profiles from the natural ligand approach. This ligand mimetic design and optimization approach can be expanded to apply to other cardiovascular disease targets and emerging therapeutic areas, providing differentiated drug molecules with increased specificity and extended half-life.


Asunto(s)
Anticuerpos Monoclonales/química , Neurregulina-1/química , Receptor ErbB-4/agonistas , Anticuerpos Monoclonales/metabolismo , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/química , Células Madre Pluripotentes Inducidas/metabolismo , Cinética , Ligandos , Miocitos Cardíacos/química , Miocitos Cardíacos/metabolismo , Neurregulina-1/metabolismo , Unión Proteica , Receptor ErbB-4/metabolismo , Transducción de Señal
10.
PLoS One ; 15(6): e0234268, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32497150

RESUMEN

Annexin A1 (anxA1) is an immunomodulatory protein that has been proposed as a tumor vascular target for antitumor biologic agents, yet to date the vascular expression of anxA1 in specific tumor indications has not been systematically assessed. Attempts to evaluate vascular anxA1 expression by immunohistochemistry are complicated by a lack of available antibodies that are both specific for anxA1 and bind the N-terminal-truncated form of anxA1 that has previously been identified in tumor vasculature. To study the vascular expression pattern of anxA1 in non-small-cell lung carcinoma (NSCLC), we isolated an antibody capable of binding N-terminal-truncated anxA127-346 and employed it in immunohistochemical studies of human lung specimens. Lung tumor specimens evaluated with this antibody revealed vascular (endothelial) anxA1 expression in five of eight tumor samples studied, but no vascular anxA1 expression was observed in normal lung tissue. Tumor microarray analysis further demonstrated positive vascular staining for anxA1 in 30 of 80 NSCLC samples, and positive staining of neoplastic cells was observed in 54 of 80 samples. No correlation was observed between vascular and parenchymal anxA1 expression. Two rodent tumor models, B16-F10 and Py230, were determined to have upregulated anxA1 expression in the intratumoral vasculature. These data validate anxA1 as a potential vascular anti-tumor target in a subset of human lung tumors and identify rodent models which demonstrate anxA1 expression in tumor vasculature.


Asunto(s)
Anexina A1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Regulación hacia Arriba , Animales , Carcinoma de Pulmón de Células no Pequeñas/irrigación sanguínea , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA