Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39058243

RESUMEN

Endogenous peptides are an abundant and versatile class of biomolecules with vital roles pertinent to the functionality of the nervous, endocrine, and immune systems and others. Mass spectrometry stands as a premier technique for identifying endogenous peptides, yet the field still faces challenges due to the lack of optimized computational resources for reliable raw mass spectra analysis and interpretation. Current database searching programs can exhibit discrepancies due to the unique properties of endogenous peptides, which typically require specialized search considerations. Herein, we present a high throughput, novel scoring algorithm for the extraction and ranking of conserved amino acid sequence motifs within any endogenous peptide database. Motifs are conserved patterns across organisms, representing sequence moieties crucial for biological functions, including maintenance of homeostasis. MotifQuest, our novel motif database generation algorithm, is designed to work in partnership with EndoGenius, a program optimized for database searching of endogenous peptides and that is powered by a motif database to capitalize on biological context to produce identifications. MotifQuest aims to quickly develop motif databases without any prior knowledge, a laborious task not possible with traditional sequence alignment resources. In this work we illustrate the utility of MotifQuest to expand EndoGenius' identification utility to other endogenous peptides by showcasing its ability to identify antimicrobial peptides. Additionally, we discuss the potential utility of MotifQuest to parse out motifs from a FASTA database file that can be further validated as new peptide drug candidates.

2.
J Proteome Res ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38426863

RESUMEN

Neuropeptides represent a unique class of signaling molecules that have garnered much attention but require special consideration when identifications are gleaned from mass spectra. With highly variable sequence lengths, neuropeptides must be analyzed in their endogenous state. Further, neuropeptides share great homology within families, differing by as little as a single amino acid residue, complicating even routine analyses and necessitating optimized computational strategies for confident and accurate identifications. We present EndoGenius, a database searching strategy designed specifically for elucidating neuropeptide identifications from mass spectra by leveraging optimized peptide-spectrum matching approaches, an expansive motif database, and a novel scoring algorithm to achieve broader representation of the neuropeptidome and minimize reidentification. This work describes an algorithm capable of reporting more neuropeptide identifications at 1% false-discovery rate than alternative software in five Callinectes sapidus neuronal tissue types.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...