Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 8(11)2021 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-34821751

RESUMEN

Liver-associated diseases and tissue engineering approaches based on in vitro culture of functional Primary human hepatocytes (PHH) had been restricted by the rapid de-differentiation in 2D culture conditions which restricted their usability. It was proven that cells growing in 3D format can better mimic the in vivo microenvironment, and thus help in maintaining metabolic activity, phenotypic properties, and longevity of the in vitro cultures. Again, the culture method and type of cell population are also recognized as important parameters for functional maintenance of primary hepatocytes. Hepatic organoids formed by self-assembly of hepatic cells are microtissues, and were able to show long-term in vitro maintenance of hepato-specific characteristics. Thus, hepatic organoids were recognized as an effective tool for screening potential cures and modeling liver diseases effectively. The current review summarizes the importance of 3D hepatic organoid culture over other conventional 2D and 3D culture models and its applicability in Liver tissue engineering.

2.
Nanomedicine ; 37: 102434, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34214684

RESUMEN

Atherosclerosis is a multifactorial disease triggered and sustained by risk factors such as high cholesterol, high blood pressure and unhealthy lifestyle. Inflammation plays a pivotal role in atherosclerosis pathogenesis. In this study, we developed a simvastatin (STAT) loaded nanoliposomal formulation (LIPOSTAT) which can deliver the drug into atherosclerotic plaque, when administered intravenously. This formulation is easily prepared, stable, and biocompatible with minimal burst release for effective drug delivery. 2D and 3D in vitro models were examined towards anti-inflammatory effects of STAT, both free and in combination with liposomes. LIPOSTAT induced greater cholesterol efflux in the 2D foam cells and significantly reduced inflammation in both 2D and 3D models. LIPOSTAT alleviated inflammation by reducing the secretion of early and late phase pro-inflammatory cytokines, monocyte adherence marker, and lipid accumulation cytokines. Additionally, the 3D foam cell spheroid model is a convenient and practical approach in testing various anti-atherosclerotic drugs without the need for human tissue.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Liposomas/farmacología , Nanopartículas/química , Simvastatina/farmacología , Aterosclerosis/genética , Aterosclerosis/patología , Línea Celular , Sistemas de Liberación de Medicamentos/métodos , Células Espumosas/efectos de los fármacos , Células Espumosas/patología , Humanos , Inflamación/genética , Inflamación/patología , Liposomas/química , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología , Simvastatina/química , Esferoides Celulares/química , Esferoides Celulares/efectos de los fármacos
3.
Integr Biol (Camb) ; 13(7): 184-195, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34184053

RESUMEN

Alcohol injury induces hepatic fibrosis which gradually progresses to cirrhosis, sometimes may lead to liver cancer. Animal models are less efficient in mimicking responses of human liver cells, whereas in vitro models discussed so far are majorly based on rodent cells. In this work, a coculture of primary human hepatocytes (PHHs) with LX-2 cells was established on the unmodified (C:F_0:0), collagen-I modified (C:F_1:0), fibronectin modified (C:F_0:1) and 3:1 collagen-I to fibronectin modified (C:F_3:1) 3D electrospun fibrous scaffolds. The effect of alcohol injury was evaluated on this cell-scaffold model at 0-40 µl/ml alcohol concentrations over 14 days of culture period by using the gold standard sandwich culture as the control. Among all the culture groups, C:F_3:1 scaffold was able to maintain translational and transcriptional properties of human liver cells at all concentrations of alcohol treatment. The study reveals that, PHHs on C:F_3:1 were able to maintain ~4-fold and ~1.6-fold higher secretion of albumin than the gold standard sandwich culture on Day 3 and Day 7, respectively. When treated with alcohol, at concentrations of 20 and 40 µl/ml, albumin secretion was also observed to be higher (~2-fold) when compared to the gold standard sandwich culture. Again as expected, in C:F_3:1 culture group on 40 µl/ml alcohol treatment, albumin gene expression decreased by ~2-fold due to alcohol toxicity, whereas CYP2C9, CYP3A4, CYP2E1 and CYP1A2 gene expressions upregulated by ~3.5, ~~4, ~5 and ~15-fold, respectively in response to the alcohol injury. LX-2 cells also acquire more quiescent phenotype on C:F_3:1 scaffolds when compared to the gold standard sandwich culture upon alcohol treatment. Thus, C:F_3:1 scaffold with human liver cells was established as the potential platform to scan alcohol toxicity at varied alcohol concentrations. Thus, it can pave a promising path not only to support functional healthy human liver cells for liver tissue engineering but also to examine potential drugs to study the progression or inhibition of alcoholic liver fibrosis in vitro.


Asunto(s)
Hepatopatías Alcohólicas , Nanofibras , Animales , Hepatocitos , Humanos , Ingeniería de Tejidos , Andamios del Tejido
4.
ACS Appl Mater Interfaces ; 13(21): 24422-24430, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34019376

RESUMEN

For site-specific diseases such as atherosclerosis, it is desirable to noninvasively and locally deliver therapeutics for extended periods of time. High-intensity focused ultrasound (HIFU) provides targeted drug delivery, yet remains unable to sustain delivery beyond the HIFU treatment time. Furthermore, methods to validate HIFU-enhanced drug delivery remain limited. In this study, we report on HIFU-targeted implantation of degradable drug-loaded sound-sensitive multicavity PLGA microparticles (mcPLGA MPs) as a theranostic agent for the treatment of arterial lesions. Once implanted into the targeted tissue, mcPLGA MPs eluted dexamethasone for several days, thereby reducing inflammatory markers linked to oxidized lipid uptake in a foam cell spheroid model. Furthermore, implanted mcPLGA MPs created hyperechoic regions on diagnostic ultrasound images, and thus noninvasively verified that the target region was treated with the theranostic agents. This novel and innovative multifunctional theranostic platform may serve as a promising candidate for noninvasive imaging and treatment for site-specific diseases such as atherosclerosis.


Asunto(s)
Arteritis/diagnóstico por imagen , Medicina de Precisión , Ondas Ultrasónicas , Arteritis/terapia , Humanos
5.
Mater Sci Eng C Mater Biol Appl ; 123: 111694, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33812568

RESUMEN

The presented work outlined the development of a new biocompatible hydrogel material that has potential applications in soft tissue engineering. As a proof of concept, human hepatocytes were used to demonstrate the suitability of this material in providing conducive environment for cellular growth and functional development. Herein, a detailed synthesis of novel gelatin derivatives - photo-crosslinkable glycidyl methacrylate (GMA) functionalized gelatins (Gelatin-GMA), and preparation of three-dimensional (3D) hydrogel scaffolds for the encapsulated Huh-7.5 cells is reported. The Gelatin-GMA biopolymers were synthesized at two different pH values of 3.5 (acidic) and 10.5 (basic) where two different photo-crosslinkable polymers were formed utilizing -COOH & -OH groups in acidic pH, and -NH2 & -OH groups in basic pH. The hydrogels were prepared using an initiator (Irgacure I2959) in the presence of UV light. The Gelatin-GMA biopolymers were characterized using spectroscopic studies which confirmed the successful preparation of the polymer derivatives. Rheological measurement was carried out to characterize the mechanical properties and derive the mesh sizes of the 3D hydrogels. Subsequently, detailed in vitro hepatocyte compatibility and functionality studies were performed in the 3D cell seeded hydrogel platform. The 3D hydrogel design with larger mesh sizes utilizes the advantage of the excellent diffusion properties of porous platform, and enhanced cell-growth was observed, which in turn elicited favorable Huh-7.5 response. The hydrogels led to improved cellular functions such as differentiation, viability and proliferation. Overall, it showed that the Gelatin-GMA based hydrogels presented better results compared to control sample (GelMA) because of the higher mesh sizes in Gelatin-GMA based hydrogels. Additionally, the functional group studies of the two Gelatin-GMA samples revealed that the cell functionalities are almost unaffected even after the tripeptide - Arg-Gly-Asp (RGD) in Gelatin-GMA synthesized at pH 3.5 is no longer completely available.


Asunto(s)
Gelatina , Ingeniería de Tejidos , Compuestos Epoxi , Humanos , Hidrogeles , Hígado , Metacrilatos , Andamios del Tejido
6.
Mater Sci Eng C Mater Biol Appl ; 123: 112013, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33812632

RESUMEN

In the sphere of liver tissue engineering (LTE), 3D bioprinting has emerged as an effective technology to mimic the complex in vivo hepatic microenvironment, enabling the development of functional 3D constructs with potential application in the healthcare and diagnostic sector. This review gears off with a note on the liver's microscopic 3D architecture and pathologies linked to liver injury. The write-up is then directed towards unmasking recent advancements and prospects of bioprinting for recapitulating 3D hepatic structure and function. The article further introduces available stem cell opportunities and different strategies for their directed differentiation towards various hepatic stem cell types, including hepatocytes, hepatic sinusoidal endothelial cells, stellate cells, and Kupffer cells. Another thrust of the article is on understanding the dynamic interplay of different hepatic cells with various microenvironmental cues, which is crucial for controlling differentiation, maturation, and maintenance of functional hepatic cell phenotype. On a concluding note, various critical issues and future research direction towards clinical translation of bioprinted hepatic constructs are discussed.


Asunto(s)
Bioimpresión , Células Endoteliales , Hígado , Impresión Tridimensional , Ingeniería de Tejidos
7.
Mater Sci Eng C Mater Biol Appl ; 111: 110723, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32279797

RESUMEN

Extracellular matrix (ECM) proteins are important regulators of cellular behaviour in the native environment. It has been established that ECM proteins - collagen-I and fibronectin - are present in liver extracellular matrix and regulate specific functions of primary hepatocytes. While scaffolds grafted with the individual ECM protein have shown support for hepatocyte functional properties in vitro, the synergistic effects of both ECM proteins remain to be explored. Such studies are even more limited when three-dimensional (3D) scaffolds are involved. In the current work, the fabrication of a series of highly porous poly(lactic-co-glycolic acid) (PLGA) 3D electrospun scaffolds, simultaneously modified with both collagen-I and fibronectin, has been demonstrated. Different ratios of collagen-I to fibronectin were optimized to study the synergistic effects of the proteins in supporting the viability and functional properties of Huh-7.5 cells. The ratio of collagen-I to fibronectin at 3:1 was found to provide the most efficient chemisorption on the 3D scaffolds. At this ratio, the total protein content that can be grafted on the scaffolds was the highest and the most homogeous. This led to remarkable enhancement of cell seeding efficiency as well as proliferation. Most importantly, liver specific genes such as albumin and cytochrome P450 enzymes i.e. CYP3A4 and CYP3A7 were significantly upregulated by ~12.5, 7 and 4.5 fold respectively, as compared to unmodified PLGA scaffolds after 28 days of culture. Compared to single-protein modified scaffolds, scaffolds modified with 3:1 collagen to fibronectin result in a rise of the albumin gene expression of cultured cells by ~8 to 10 fold, whereas CYP3A4 gene expression improved by ~5 to 7 fold and CYP3A7 gene expression improved by ~4 to 4.5 fold after a long culture period of 28 days. Albumin secretion was improved by ~4 fold compared to unmodified PLGA scaffolds, ~3 fold compared to collagen-I modified culture groups and ~2 fold compared to fibronectin modified culture groups. The multi-protein modified scaffolds, at the optimum ratio, were able to significantly enhance functional properties of the liver cells. This simple yet highly functioning platform would be useful for in vitro culture of liver cells for both drug screening as well as translational purposes.


Asunto(s)
Colágeno Tipo I/química , Fibronectinas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Andamios del Tejido/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Técnicas de Cultivo de Célula , Línea Celular , Proliferación Celular/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Porosidad , Albúmina Sérica/metabolismo , Regulación hacia Arriba/efectos de los fármacos
8.
Acta Biomater ; 73: 217-227, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29454157

RESUMEN

A major challenge of maintaining primary hepatocytes in vitro is progressive loss of hepatocyte-specific functions, such as protein synthesis and cytochrome P450 (CYP450) catalytic activity. We developed a three-dimensional (3D) nanofibrous scaffold made from poly(l-lactide-co-glycolide) (PLGA) polymer using a newly optimized wet electrospinning technique that resulted in a highly porous structure that accommodated inclusion of primary human hepatocytes. Extracellular matrix (ECM) proteins (type I collagen or fibronectin) at varying concentrations were chemically linked to electrospun PLGA using amine coupling to develop an in vitro culture system containing the minimal essential ECM components of the liver micro-environment that preserve hepatocyte function in vitro. Cell-laden nanofiber scaffolds were tested in vitro to maintain hepatocyte function over a two-week period. Incorporation of type I collagen onto PLGA scaffolds (PLGA-Chigh: 100 µg/mL) led to 10-fold greater albumin secretion, 4-fold higher urea synthesis, and elevated transcription of hepatocyte-specific CYP450 genes (CYP3A4, 3.5-fold increase and CYP2C9, 3-fold increase) in primary human hepatocytes compared to the same cells grown within unmodified PLGA scaffolds over two weeks. These indices, measured using collagen-bonded scaffolds, were also higher than scaffolds coupled to fibronectin or an ECM control sandwich culture composed of type I collagen and Matrigel. Induction of CYP2C9 activity was also higher in these same type I collagen PLGA scaffolds compared to other ECM-modified or unmodified PLGA constructs and was equivalent to the ECM control at 7 days. Together, we demonstrate a minimalist ECM-based 3D synthetic scaffold that accommodates primary human hepatocyte inclusion into the matrix, maintains long-term in vitro survival and stimulates function, which can be attributed to coupling of type I collagen. STATEMENT OF SIGNIFICANCE: Culturing primary hepatocytes within a three-dimensional (3D) structure that mimics the natural liver environment is a promising strategy for extending the function and viability of hepatocytes in vitro. In the present study we generate porous PLGA nanofibers, that are chemically modified with extracellular matrix proteins, to serve as 3D scaffolds for the in vitro culture of primary human hepatocytes. Our findings demonstrate that the use of ECM proteins, especially type I collagen, in a porous 3D environment helps to improve the synthetic function of primary hepatocytes over time. We believe the work presented within will provide insights to readers for drug toxicity and tissue engineering applications.


Asunto(s)
Colágeno Tipo I/química , Matriz Extracelular/química , Hepatocitos/metabolismo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Andamios del Tejido/química , Animales , Supervivencia Celular , Hepatocitos/citología , Humanos , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...