Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 951: 175676, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39179048

RESUMEN

Intertidal microphytobenthos (MPB) are a major contributor to primary production in estuarine ecosystems. While their biomass is highly variable at multiple spatial and temporal scales, the underlying drivers are as yet little understood. Both in situ sampling and remote-sensing techniques often lack the temporal resolution or coverage to simultaneously capture short-term (intratidal to daily) and longer-term (weekly to annual) biomass changes. Our field setup with in-situ NDVI sensors allowed us to study MPB surface biomass variability at high temporal resolution (10 mins) for up to two years in a freshwater euglenoid dominated mudflat, and a brackish and a marine diatom dominated mudflat. MPB biomass showed marked periodicities at multiple temporal scales: seasonal, spring-neap and intratidal. The diatom-dominated MPB community showed a seasonal biomass peak in winter, while the euglenoid-dominated community showed biomass peaks during spring and summer, probably caused by underlying divergent responses to mainly irradiance, temperature and wind-induced resuspension, and macrobenthos grazing. Spring-neap periodicity likely resulted from differential migratory responses of the MPB communities to variation in timing and duration of daylight exposure. In the freshwater community, upward migration only occurred when exposure duration was sufficiently long (≥4 h). In the diatom-dominated community, morning daylight exposure resulted in highest NDVI values. This study highlights the differences in MPB biomass dynamics between MPB communities within estuarine ecosystems, and underscores the great potential of high-resolution temporal NDVI monitoring for more accurate estimates of MPB biomass and primary production.


Asunto(s)
Biopelículas , Biomasa , Diatomeas , Monitoreo del Ambiente , Estaciones del Año , Diatomeas/fisiología , Monitoreo del Ambiente/métodos , Ecosistema , Euglénidos
2.
Sci Total Environ ; 860: 160402, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36427722

RESUMEN

We studied how changing human impacts affected phytoplankton dynamics in the freshwater and brackish tidal reaches of the Zeeschelde estuary (Belgium) between 2002 and 2018. Until the early 2000s, the Zeeschelde was heavily polluted due to high wastewater discharges. By 2008, water quality had improved, resulting in lower nutrient concentrations and higher oxygen levels. Since 2009, however, increased dredging activities resulted in altered hydrodynamics and increased suspended sediment concentration. The combined effects of these environmental changes were reflected in three marked transitions in phytoplankton community composition. Assemblages were dominated by Thalassiosirales and green algae (especially Scenedesmaceae) until 2003. The period 2003-2011 was characterized by the wax and wane of the centric diatoms Actinocyclus and Aulacoseira, while in the period 2012-2018 Thalassiosirales and Cyanobacteria became dominant, the latter mainly imported from the tributaries. Phytoplankton biomass increased sharply in 2003, after which there was a gradual decline until 2018. By 2018, the timing of the growing season had advanced with about one month compared to the start of the study, probably as a consequence of climate warming and intensified zooplankton grazing pressure. Our study shows that de-eutrophication (during the 2000s) and morphological interventions in the estuary (in the 2010s) were dominant drivers of phytoplankton dynamics but that the main shifts in community composition were triggered by extreme weather events, suggesting significant resistance of autochthonous communities to gradual changes in the environment.


Asunto(s)
Diatomeas , Clima Extremo , Humanos , Fitoplancton , Estuarios , Bélgica , Hidrodinámica , Biomasa , Eutrofización
3.
New Phytol ; 204(3): 521-535, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24996048

RESUMEN

Diatoms are unicellular photosynthetic microalgae that play a major role in global primary production and aquatic biogeochemical cycling. Endosymbiotic events and recurrent gene transfers uniquely shaped the genome of diatoms, which contains features from several domains of life. The biosynthesis pathways of sterols, essential compounds in all eukaryotic cells, and many of the enzymes involved are evolutionarily conserved in eukaryotes. Although well characterized in most eukaryotes, the pathway leading to sterol biosynthesis in diatoms has remained hitherto unidentified. Through the DiatomCyc database we reconstructed the mevalonate and sterol biosynthetic pathways of the model diatom Phaeodactylum tricornutum in silico. We experimentally verified the predicted pathways using enzyme inhibitor, gene silencing and heterologous gene expression approaches. Our analysis revealed a peculiar, chimeric organization of the diatom sterol biosynthesis pathway, which possesses features of both plant and fungal pathways. Strikingly, it lacks a conventional squalene epoxidase and utilizes an extended oxidosqualene cyclase and a multifunctional isopentenyl diphosphate isomerase/squalene synthase enzyme. The reconstruction of the P. tricornutum sterol pathway underscores the metabolic plasticity of diatoms and offers important insights for the engineering of diatoms for sustainable production of biofuels and high-value chemicals.


Asunto(s)
Diatomeas/metabolismo , Ácido Mevalónico/metabolismo , Esteroles/metabolismo , Simulación por Computador , Escherichia coli , Regulación de la Expresión Génica/fisiología , Ácido Mevalónico/química , Modelos Biológicos , Estructura Molecular , Saccharomyces cerevisiae , Esteroles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA