Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 196: 106402, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402778

RESUMEN

Cephalopods receive a great deal of attention due to their socioeconomically important fisheries and aquaculture industries as well their unique biological features. However, basic information about their physiological responses under stress conditions is lacking. This study investigated the impact of a simple stressor, exercise to exhaustion, on the activity levels of antioxidant enzymes and the concentrations of molecules involved in oxidative stress response in the pale octopus (Octopus pallidus). Eight biochemical assays were measured in the humoral (plasma) and cellular (hemocyte) components of O. pallidus haemolymph, the invertebrate analogue to vertebrate blood. Overall, exercise resulted in an increase in activity of plasma catalase (CAT) and glutathione-S-transferase (GST) and the decrease in activity of plasms glutathione reductase (GR). In the hemocytes, the exercise elicited a different response, with a reduction in the activity of superoxide dismutase (SOD), GR, and glutathione peroxidase (GPX) and a reduction in nitric oxide (NO) concentration. Malondialdehyde (MDA) activity was similar in the plasma and haemocytes in control and exercised treatments, indicating that exercise did not induce lipid peroxidation. These results provide an important baseline for understanding oxidative stress in octopus, with exercise to exhaustion serving as a simple stressor which will ultimately inform our ability to detect and understand physiological responses to more complex stressors.


Asunto(s)
Octopodiformes , Animales , Octopodiformes/metabolismo , Antioxidantes , Estrés Oxidativo , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxidación de Lípido , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Glutatión/metabolismo
2.
Mar Pollut Bull ; 199: 115480, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37839912

RESUMEN

High-intensity, impulsive sounds are used to locate oil and gas reserves during seismic exploration of the seafloor. The impacts of this noise pollution on the health and mortality of marine invertebrates are not well known, including the silverlip pearl oyster (Pinctada maxima), which comprises one of the world's last remaining significant wildstock pearl oyster fisheries, in northwestern Australia. We exposed ≈11,000 P. maxima to a four-day experimental seismic survey, plus one vessel-control day. After exposure, survival rates were monitored throughout a full two-year production cycle, and the number and quality of pearls produced at harvest were assessed. Oysters from two groups, on one sampling day, exhibited reduced survival and pearl productivity compared to controls, but 14 other groups receiving similar or higher exposure levels did not. We therefore found no conclusive evidence of an impact of the seismic source survey on oyster mortality or pearl production.


Asunto(s)
Pinctada , Animales , Ruido , Sonido , Australia , Explotaciones Pesqueras
3.
Environ Pollut ; 309: 119699, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35787424

RESUMEN

Anthropogenic aquatic noise is recognised as an environmental pollutant with the potential to negatively affect marine organisms. Seismic surveys, used to explore subseafloor oil reserves, are a common source of aquatic noise that have garnered attention due to their intense low frequency inputs and their frequent spatial overlap with coastal fisheries. Commercially important Southern Rock Lobster (Jasus edwardsii) adults have previously shown sensitivity to signals from a single seismic air gun. Here, the sensitivity of J. edwardsii juveniles and puerulus to the signals of a full-scale seismic survey were evaluated to determine if early developmental stages were affected similarly to adults, and the range of impact. To quantify impact, lobster mortality rates, dorsoventral righting reflex and progression through moult cycle were evaluated following exposure. Exposure did not result in mortality in either developmental stage, however, air gun signals caused righting impairment to at least 500 m in lobsters sampled immediately following exposure, as had previously been reported in adults with corresponding sensory system damage following exposure. Impairment resulting from close range (0 m) exposure appeared to be persistent, as previously reported in adults, whereas juveniles exposed at a more distant range (500 m) showed recovery, indicating that exposure at a range of 500 m may not cause lasting impairment to righting. Intermoult duration was (time between moults) significantly increased in juveniles exposed at 0 m from the source, indicating the potential for slowed development, growth, and physiological stress. These results demonstrate that exposure to seismic air gun signals have the potential to negatively impact early life history stages of Southern Rock Lobsters. The similarity of both the impacts and the sound exposure levels observed here compared to previous exposure using a single air gun offer validation for the approach, which opens the potential for accessible field-based experimental work into the impact of seismic surveys on marine invertebrates.


Asunto(s)
Palinuridae , Animales , Larva/fisiología , Ruido , Palinuridae/fisiología , Reflejo de Enderezamiento , Alimentos Marinos
4.
J Cell Biol ; 220(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34633413

RESUMEN

The cavin proteins are essential for caveola biogenesis and function. Here, we identify a role for the muscle-specific component, Cavin4, in skeletal muscle T-tubule development by analyzing two vertebrate systems, mouse and zebrafish. In both models, Cavin4 localized to T-tubules, and loss of Cavin4 resulted in aberrant T-tubule maturation. In zebrafish, which possess duplicated cavin4 paralogs, Cavin4b was shown to directly interact with the T-tubule-associated BAR domain protein Bin1. Loss of both Cavin4a and Cavin4b caused aberrant accumulation of interconnected caveolae within the T-tubules, a fragmented T-tubule network enriched in Caveolin-3, and an impaired Ca2+ response upon mechanical stimulation. We propose a role for Cavin4 in remodeling the T-tubule membrane early in development by recycling caveolar components from the T-tubule to the sarcolemma. This generates a stable T-tubule domain lacking caveolae that is essential for T-tubule function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Sarcolema/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Caveolas/metabolismo , Línea Celular , Embrión no Mamífero/metabolismo , Imagenología Tridimensional , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/ultraestructura , Unión Proteica , Sarcolema/ultraestructura , Pez Cebra/embriología
5.
Environ Pollut ; 267: 115478, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33254599

RESUMEN

Staotcysts, the mechanosensory organs common to many marine invertebrates, have shown sensitivity to aquatic noise. Previously, rock lobsters (Jasus edwardsii) from a remote site with little exposure to anthropogenic noise incurred persistent damage to the statocyst and righting reflex following exposure to seismic air gun signals. Here, J. edwardsii collected from a site subject to high levels of anthropogenic noise were exposed to an equivalent seismic air gun signal regime as the previous study of noise-naïve lobsters. Following exposure, both control and exposed treatments were found to have damage to the statocyst equivalent to that of noise-naïve lobsters following seismic exposure, which led to the conclusion that the damage was pre-existing and not exacerbated by seismic exposure. The source of the damage in the lobsters in this study could not be ascertained, but the soundscape comparisons of the collection sites showed that the noisy site had a 5-10 dB greater level of noise, equivalent to a 3-10 times greater intensity, in the 10-700 Hz range than was found at the remote collection site. In addition to the lack of further damage following seismic exposure, no disruption to the righting reflex was observed. Indeed, compared to the noise naïve lobsters, the lobsters here demonstrated an ability to cope with or adapt to the mechanosensory damage, indicating a need for better understanding of the ecological impacts of the damage caused by low frequency noise on marine organisms. More broadly, this study raises historical exposure to noise as a previously unrecognised but vitally important consideration for studies of aquatic noise.


Asunto(s)
Ruido , Palinuridae , Animales , Ambiente , Ruido/efectos adversos , Alimentos Marinos
6.
Proc Biol Sci ; 286(1907): 20191424, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31337309

RESUMEN

The effects of anthropogenic aquatic noise on marine invertebrates are poorly understood. We investigated the impact of seismic surveys on the righting reflex and statocyst morphology of the palinurid rock lobster, Jasus edwardsii, using field-based exposure to air gun signals. Following exposure equivalent to a full-scale commercial assay passing within 100-500 m, lobsters showed impaired righting and significant damage to the sensory hairs of the statocyst. Reflex impairment and statocyst damage persisted over the course of the experiments-up to 365 days post-exposure and did not improved following moulting. These results indicate that exposure to air gun signals caused morphological damage to the statocyst of rock lobsters, which can in turn impair complex reflexes. This damage and impairment adds further evidence that anthropogenic aquatic noise has the potential to harm invertebrates, necessitating a better understanding of possible ecological and economic impacts.


Asunto(s)
Ruido/efectos adversos , Palinuridae/fisiología , Acústica , Animales , Femenino , Armas de Fuego , Palinuridae/efectos de la radiación , Reflejo de Enderezamiento/fisiología , Reflejo de Enderezamiento/efectos de la radiación , Órganos de los Sentidos/fisiología , Órganos de los Sentidos/efectos de la radiación
7.
Fish Shellfish Immunol ; 89: 660-671, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30902723

RESUMEN

Lobsters are fished world-wide due to their status as a high value, luxury seafood. A large proportion of the product is sold via live export, with lobsters subject to a range of stressors during holding post-capture. Improving the current understanding of the immune response to these stressors assists in improving efficiency and reducing loss in the chain between capture and consumption. In this study, the immune status of four treatment groups of Southern Rock Lobster (Jasus edwardsii) were studied: controls recently landed from a fishing boat, lobsters displaying advanced shell necrosis, lobsters in an unexplained moribund state and lobsters held in a processing facility for 10 weeks in standard conditions (i.e. high density, fasted). A total of 15 immune parameters and 19 haemolymph biochemical parameters were assayed. Phenoloxidase activity was only sporadically observed in haemocyte lysate and was consistently observed at a low level in the plasma with no difference between treatments for either. Haemocyte lysate prophenoloxidase activity was detected in most individuals, with no differences found between treatments. Prophenoloxidase in the plasma showed the highest level of activity, with the shell necrosis treatment demonstrating an elevated activity level relative to the other three treatments. Cell viability was not affected in any treatment. Lobsters with shell necrosis had a reduced capacity for phagocytosis, a significantly higher total haemocyte count, fewer hyalinocytes and more granulocytes and semigranulocytes. Fasted lobsters showed an opposite shift, with significantly more hyalinocytes compared to the other treatments and very few granulocytes and semigranulocytes. The balance of a range electrolytes, minerals metabolites and enzymes were affected in shell necrosis and fasted treatments, raising them as potential markers for immunocompromised lobsters. Multivariate analysis of all assayed parameters showed that all individuals in the necrosis treatment showed a similar, distinct immune response and that the fasted treatment, along with one control and one moribund individual, showed a separate intermediate response. The remainder of the control and moribund lobsters demonstrated a distinct "non-response" in comparison. These results offer a characterisation of the physiological response to common challenges during post-capture holding of rock lobsters, demonstrating the differential response to pathogenic bacterial infection, long term fasting, non-specific moribundity and the stress of capture and transport.


Asunto(s)
Hemocitos/enzimología , Hemolinfa/química , Inmunidad Innata , Palinuridae/inmunología , Animales , Femenino , Masculino , Estrés Fisiológico
8.
Proc Natl Acad Sci U S A ; 114(40): E8537-E8546, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923925

RESUMEN

Seismic surveys map the seabed using intense, low-frequency sound signals that penetrate kilometers into the Earth's crust. Little is known regarding how invertebrates, including economically and ecologically important bivalves, are affected by exposure to seismic signals. In a series of field-based experiments, we investigate the impact of exposure to seismic surveys on scallops, using measurements of physiological and behavioral parameters to determine whether exposure may cause mass mortality or result in other sublethal effects. Exposure to seismic signals was found to significantly increase mortality, particularly over a chronic (months postexposure) time scale, though not beyond naturally occurring rates of mortality. Exposure did not elicit energetically expensive behaviors, but scallops showed significant changes in behavioral patterns during exposure, through a reduction in classic behaviors and demonstration of a nonclassic "flinch" response to air gun signals. Furthermore, scallops showed persistent alterations in recessing reflex behavior following exposure, with the rate of recessing increasing with repeated exposure. Hemolymph (blood analog) physiology showed a compromised capacity for homeostasis and potential immunodeficiency, as a range of hemolymph biochemistry parameters were altered and the density of circulating hemocytes (blood cell analog) was significantly reduced, with effects observed over acute (hours to days) and chronic (months) scales. The size of the air gun had no effect, but repeated exposure intensified responses. We postulate that the observed impacts resulted from high seabed ground accelerations driven by the air gun signal. Given the scope of physiological disruption, we conclude that seismic exposure can harm scallops.


Asunto(s)
Acústica , Conducta Animal , Exposición a Riesgos Ambientales , Ruido , Pecten/fisiología , Sonido , Estrés Fisiológico , Animales
9.
Mar Pollut Bull ; 125(1-2): 146-156, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-28807415

RESUMEN

There is a critical knowledge gap regarding the impacts of seismic air gun signals on the physiology of adult crustaceans. We conducted four controlled field experiments to examine the impact of seismic acoustic signals on spiny lobster, Jasus edwardsii. Seismic air gun exposure suppressed total haemocyte count (THC) for up to 120days post-exposure, suggesting a chronic negative impact of immune competency. THC levels after 365days post-exposure, were elevated two fold, potentially indicating an immune response to infection. Haemolymph refractive index was reduced after 120days post exposure in one experiment, suggesting a chronic impairment of nutritional condition. There was no effect of air gun exposure on 24 haemolymph biochemical parameters, hepatopancreas index or survival. Collectively these results indicate that the biochemical haematological homeostasis of J. edwardsii is reasonably resilient to seismic acoustic signals, however, air gun exposure may negatively influence the lobster's nutritional condition and immunological capacity.


Asunto(s)
Hemolinfa/química , Hemolinfa/fisiología , Ruido/efectos adversos , Palinuridae/fisiología , Acústica/instrumentación , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Ecosistema , Ambiente , Enzimas/metabolismo , Hemocitos , Hemolinfa/citología , Hepatopáncreas/fisiología , Concentración de Iones de Hidrógeno , Refractometría
10.
Nat Ecol Evol ; 1(7): 195, 2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28812592

RESUMEN

Zooplankton underpin the health and productivity of global marine ecosystems. Here we present evidence that suggests seismic surveys cause significant mortality to zooplankton populations. Seismic surveys are used extensively to explore for petroleum resources using intense, low-frequency, acoustic impulse signals. Experimental air gun signal exposure decreased zooplankton abundance when compared with controls, as measured by sonar (~3-4 dB drop within 15-30 min) and net tows (median 64% decrease within 1 h), and caused a two- to threefold increase in dead adult and larval zooplankton. Impacts were observed out to the maximum 1.2 km range sampled, which was more than two orders of magnitude greater than the previously assumed impact range of 10 m. Although no adult krill were present, all larval krill were killed after air gun passage. There is a significant and unacknowledged potential for ocean ecosystem function and productivity to be negatively impacted by present seismic technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA