Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 17044, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048642

RESUMEN

American white (Quercus alba L.) oak casks have been used for liquid storage for centuries. Their use in aged spirits is critical to imparting flavor and mouthfeel to the final product. The reason that barrels retain liquid has been hypothesized to be the result of abundant physiological structures called tyloses in parenchyma tissues and medullary rays in white oak. Using non-destructive X-ray computed tomography (XRCT) imaging, we reveal an unprecedented view of tylose structure and quantify the pore-filling capacity of tyloses in white oak that underscores the liquid retention we observe in casks. We show that pores of white oaks are filled with sevenfold higher tylose volume compared to northern red oak (Q. rubra), consistent with prior literature that casks made from white oak retain liquid while red oak fails to do so. We propose that XRCT represents a methodological standard for observing these complex structures and should be employed to understand the many questions related to liquid losses from casks, cultural treatment of casks, and the influence of climate change on oak tyloses in the future.


Asunto(s)
Quercus , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Vino/análisis , Imagenología Tridimensional/métodos
2.
Plants (Basel) ; 13(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38931109

RESUMEN

In this study, we investigated the interplay between the spermosphere inoculum, host plant physiology, and endophytic compartment (EC) microbial community. Using 16S ribosomal RNA gene sequencing of root, stem, and leaf endophytic compartment communities, we established a baseline microbiome for Nicotiana sp. Phenotypic differences were observed due to the addition of some bacterial inoculants, correlated with endogenous auxin loads using transgenic plants expressing the auxin reporter pB-GFP::P87. When applied as spermosphere inoculants, select bacteria were found to create reproducible variation within the root EC microbiome and, more systematically, the host plant physiology. Our findings support the assertion that the spermosphere of plants is a zone that can influence the EC microbiome when applied in a greenhouse setting.

3.
J Agric Food Chem ; 72(6): 3171-3179, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38291808

RESUMEN

Herbicide-resistant weeds are increasingly a problem in crop fields when exposed to similar chemistry over time. To avoid future yield losses, identifying herbicidal chemistry needs to be accelerated. We screened 50,000 small molecules using a liquid-handling robot and light microscopy focusing on pre-emergent herbicides in the family of cellulose biosynthesis inhibitors. Through phenotypic, chemical, genetic, and in silico methods we uncovered 6-{[4-(2-fluorophenyl)-1-piperazinyl]methyl}-N-(2-methoxy-5-methylphenyl)-1,3,5-triazine-2,4-diamine (fluopipamine). Symptomologies support fluopipamine as a putative antagonist of cellulose synthase enzyme 1 (CESA1) from Arabidopsis (Arabidopsis thaliana). Ectopic lignification, inhibition of etiolation, phenotypes including loss of anisotropic cellular expansion, swollen roots, and live cell imaging link fluopipamine to cellulose biosynthesis inhibition. Radiolabeled glucose incorporation of cellulose decreased in short-duration experiments when seedlings were incubated in fluopipamine. To elucidate the mechanism, ethylmethanesulfonate mutagenized M2 seedlings were screened for fluopipamine resistance. Two loci of genetic resistance were linked to CESA1. In silico docking of fluopipamine, quinoxyphen, and flupoxam against various CESA1 mutations suggests that an alternative binding site at the interface between CESA proteins is necessary to preserve cellulose polymerization in compound presence. These data uncovered potential fundamental mechanisms of cellulose biosynthesis in plants along with feasible leads for herbicidal uses.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Herbicidas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Celulosa/química , Pared Celular/metabolismo , Glucosiltransferasas/química , Plantones/metabolismo , Herbicidas/farmacología , Herbicidas/metabolismo
4.
MethodsX ; 12: 102562, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38292308

RESUMEN

Stalk lodging (structural failure crops prior to harvest) significantly reduces annual yields of vital grain crops. The lack of standardized, high throughput phenotyping methods capable of quantifying biomechanical plant traits prevents comprehensive understanding of the genetic architecture of stalk lodging resistance. A phenotyping pipeline developed to enable higher throughput biomechanical measurements of plant traits related to stalk lodging is presented. The methods were developed using principles from the fields of engineering mechanics and metrology and they enable retention of plant-specific data instead of averaging data across plots as is typical in most phenotyping studies. This pipeline was specifically designed to be implemented in large experimental studies and has been used to phenotype over 40,000 maize stalks. The pipeline includes both lab- and field-based phenotyping methodologies and enables the collection of metadata. Best practices learned by implementing this pipeline over the past three years are presented. The specific instruments (including model numbers and manufacturers) that work well for these methods are presented, however comparable instruments may be used in conjunction with these methods as seen fit.•Efficient methods to measure biomechanical traits and record metadata related to stalk lodging.•Can be used in studies with large sample sizes (i.e., > 1,000).

5.
Foods ; 12(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36765986

RESUMEN

Whiskey production originated in Scotland in the 15th century and was based on malted barley. As Scotch-Irish settlers came into the Ohio river valley, they began fermenting and distilling the primary grain of North America, maize. These earlier settlers started a heritage; they created American Whiskey. The bourbon industry in Kentucky had tremendous growth in the last 20 years, and currently, distilleries have a broad increase in product innovation, new raw materials, improved sustainability, efficient processes, and product diversification. Our study presents a new lab-scale method for new-make bourbon whiskey production. It was developed to mimic distilleries' processes; therefore, results can be extrapolated and adopted by commercial distilleries. The method focused on reproducibility with consistency from batch to batch when handled by an operator or small crew in a university lab. The method consisted of a first cooking step to make a "mash", a fermentation phase of 96 h, a first distillation accomplished with a copper pot still to obtain the "low wines" and a second distillation carried out with an air still to collect the "hearts". The method produced a final distillate of 500-700 mL for further sensory analysis and tasting. This lab-scale method showed consistency between samples in the different parameters quantified and will be also used to train students in fermentation and distillation studies.

6.
Plant Methods ; 19(1): 3, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624506

RESUMEN

This study presents a methodology for a high-throughput digitization and quantification process of plant cell walls characterization, including the automated development of two-dimensional finite element models. Custom algorithms based on machine learning can also analyze the cellular microstructure for phenotypes such as cell size, cell wall curvature, and cell wall orientation. To demonstrate the utility of these models, a series of compound microscope images of both herbaceous and woody representatives were observed and processed. In addition, parametric analyses were performed on the resulting finite element models. Sensitivity analyses of the structural stiffness of the resulting tissue based on the cell wall elastic modulus and the cell wall thickness; demonstrated that the cell wall thickness has a three-fold larger impact of tissue stiffness than cell wall elastic modulus.

7.
J Agric Food Chem ; 70(5): 1689-1703, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35099962

RESUMEN

The cell wall compositional (lignin and polysaccharides) variation of two sweet sorghum varieties, Della (D) and its variant REDforGREEN (RG), was evaluated at internodes (IN) and nodes (N) using high-performance liquid chromatography (HPLC), pyrolysis-gas chromatography-mass spectrometry (Py-GCMS), X-ray diffraction (XRD), and two-dimensional (2D) 1H-13C nuclear magnetic resonance (NMR). The stalks were grown in 2018 (D1 and RG1) and 2019 (D2 and RG2) seasons. In RG1, Klason lignin reductions by 16-44 and 2-26% were detected in IN and N, respectively. The analyses also revealed that lignin from the sorghum stalks was enriched in guaiacyl units and the syringyl/guaiacyl ratio was increased in RG1 and RG2, respectively, by 96% and more than 2-fold at IN and 61 and 23% at N. The glucan content was reduced by 23-27% for RG1 and by 17-22% for RG2 at internodes. Structural variations due to changes in both cellulose- and hemicellulose-based sugars were detected. The nonacylated and γ-acylated ß-O-4 linkages were the main interunit linkages detected in lignin. These results indicate compositional variation of stalks due to the RG variation, and the growing season could influence their mechanical and lodging behavior.


Asunto(s)
Sorghum , Pared Celular , Cromatografía de Gases y Espectrometría de Masas , Lignina , Espectroscopía de Resonancia Magnética
8.
Mol Plant Microbe Interact ; 34(11): 1320-1323, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34311561

RESUMEN

We report here the genome sequence of Bacillus sp. RRD69, a plant-growth-promoting bacterial endophyte isolated from switchgrass plants grown on a reclaimed coal-mining site in Kentucky. RRD69 is predicted to contain 3,758 protein-coding genes, with a genome size of 3.715 Mbp and a 41.41% GC content.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Bacillus , Panicum , Bacillus/genética , Endófitos/genética , Genoma Bacteriano/genética , Desarrollo de la Planta
9.
Sci Rep ; 10(1): 15454, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963320

RESUMEN

Although microbes influence plant growth, little is known about the impact of microbial diversity on plant fitness trade-offs, intraspecific-interactions, and soil nutrient dynamics in the context of biodiversity-ecosystem functioning (BEF) research. The BEF theory states that higher species richness can enhance ecosystem functioning. Thus, we hypothesize that rhizobacterial species richness will alter sorghum (Sorghum bicolor L.) growth, soil nutrient dynamics and interactions (antagonism or synergism) in a nutrient-poor greenhouse soil. Using six rhizobacterial species in a BEF experiment, we tested the impact of a species richness gradient (0, 1, 3, 5 or 6 species per community) on plant growth, nutrient assimilation, and soil nutrient dynamics via seed-inoculation. Our experiment included, one un-inoculated control, six rhizobacterial monoculture (Pseudomonas poae, Pseudomonas sp., Bacillus pumilus., Pantoea agglomerance., Microbacterium sp., and Serratia marcescens), and their nine mixture treatments in triplicate (48). Rhizobacterial species richness enhanced per pot above- or below-ground dry mass. However, the per plant growth and plant nutrient assimilation declined, most likely, due to microbial-driven competitive interactions among sorghum plants. But nevertheless, some rhizobacterial monoculture and mixture treatments improved per plant (shoot and root) growth and nutrient assimilation as well. Soil nutrient contents were mostly lower at higher plant-associated rhizobacterial diversity; among these, the soil Zn contents decreased significantly across the rhizobacterial diversity gradient. Rhizobacterial diversity promoted synergistic interactions among soil nutrients and improved root-soil interactions. Overall, our results suggest that a higher rhizobacterial diversity may enhance soil-plant interactions and total productivity under resource limited conditions.


Asunto(s)
Ecosistema , Nutrientes/metabolismo , Rhizobiaceae/fisiología , Microbiología del Suelo , Suelo/química , Sorghum/crecimiento & desarrollo , Biodiversidad , Rhizobiaceae/clasificación , Sorghum/microbiología
10.
Microbiol Resour Announc ; 8(45)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31699756

RESUMEN

We report here the genome assembly and analysis of Microbacterium strain sp. LKL04, a Gram-positive bacterial endophyte isolated from switchgrass plants (Panicum virgatum) grown on a reclaimed coal-mining site. The 2.9-Mbp genome of this bacterium was assembled into a single contig encoding 2,806 protein coding genes.

11.
AoB Plants ; 11(5): plz041, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31636881

RESUMEN

Here, we present a study into the mechanisms of primary cell wall cellulose formation in grasses, using the model cereal grass Brachypodium distachyon. The exon found adjacent to the BdCESA1 glycosyltransferase QXXRW motif was targeted using Targeting Induced Local Lesions in Genomes (TILLING) and sequencing candidate amplicons in multiple parallel reactions (SCAMPRing) leading to the identification of the Bdcesa1 S830N allele. Plants carrying this missense mutation exhibited a significant reduction in crystalline cellulose content in tissues that rely on the primary cell wall for biomechanical support. However, Bdcesa1 S830N plants failed to exhibit the predicted reduction in plant height. In a mechanism unavailable to eudicotyledons, B. distachyon plants homozygous for the Bdcesa1 S830N allele appear to overcome the loss of internode expansion anatomically by increasing the number of nodes along the stem. Stem biomechanics were resultantly compromised in Bdcesa1 S830N . The Bdcesa1 S830N missense mutation did not interfere with BdCESA1 gene expression. However, molecular dynamic simulations of the CELLULOSE SYNTHASE A (CESA) structure with modelled membrane interactions illustrated that Bdcesa1 S830N exhibited structural changes in the translated gene product responsible for reduced cellulose biosynthesis. Molecular dynamic simulations showed that substituting S830N resulted in a stabilizing shift in the flexibility of the class specific region arm of the core catalytic domain of CESA, revealing the importance of this motion to protein function.

12.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975803

RESUMEN

We report here the improved draft genome sequence of Bacillus sp. strain YF23, a bacterium originally isolated from switchgrass (Panicum virgatum) plants and shown to exhibit plant growth-promoting activity. The genome comprised 5.82 Mbp, containing 5,933 genes, with 193 as RNA genes, and a GC content of 35.10%.

13.
Microbiol Resour Announc ; 8(15)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975811

RESUMEN

We report here the improved draft genome sequence of Pseudomonas poae strain A2-S9, a bacterium that was originally isolated from switchgrass plants and exhibited the capacity for plant growth promotion. Its genome has a size of 6.68 Mbp and a GC content of 61.3%. The genome encodes 6,022 predicted protein-coding genes.

14.
Biotechnol Biofuels ; 11: 304, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30455733

RESUMEN

BACKGROUND: Lignin is a promising source of building blocks for upgrading to valuable aromatic chemicals and materials. Endocarp biomass represents a non-edible crop residue in an existing agricultural setting which cannot be used as animal feed nor soil amendment. With significantly higher lignin content and bulk energy density, endocarps have significant advantages to be converted into both biofuel and bioproducts as compared to other biomass resources. Deep eutectic solvent (DES) is highly effective in fractionating lignin from a variety of biomass feedstocks with high yield and purity while at lower cost comparing to certain ionic liquids. RESULTS: In the present study, the structural and compositional features of peach and walnut endocarp cells were characterized. Compared to typical woody and herbaceous biomass, endocarp biomass exhibits significantly higher bulk density and hardness due to its high cellular density. The sugar yields of DES (1:2 choline chloride: lactic acid) pretreated peach pit (Prunus persica) and walnut shell (Juglans nigra) were determined and the impacts of DES pretreatment on the physical and chemical properties of extracted lignin were characterized. Enzymatic saccharification of DES pretreated walnut and peach endocarps gave high glucose yields (over 90%); meanwhile, compared with dilute acid and alkaline pretreatment, DES pretreatment led to significantly higher lignin removal (64.3% and 70.2% for walnut and peach endocarps, respectively). The molecular weights of the extracted lignin from DES pretreated endocarp biomass were significantly reduced. 1H-13C HSQC NMR results demonstrate that the native endocarp lignins were SGH type lignins with dominant G-unit (86.7% and 80.5% for walnut and peach endocarps lignins, respectively). DES pretreatment decreased the S and H-unit while led to an increase in condensed G-units, which may contribute to a higher thermal stability of the isolated lignin. Nearly all ß-O-4' and a large portion of ß-5' linkages were removed during DES pretreatment. CONCLUSIONS: The high lignin content endocarps have unique cell wall characteristics when compared to the other lignocellulosic biomass feedstocks. DES pretreatment was highly effective in fractionating high lignin content endocarps to produce both sugar and lignin streams while the DES extracted lignins underwent significant changes in SGH ratio, interunit linkages, and molecular sizes.

15.
Sci Rep ; 8(1): 15899, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367085

RESUMEN

Oak barrels have been used by humans for thousands of years to store and transport valuable materials. Early settlers of the United States in Kentucky began charring the interior of new white oak barrels prior to aging distillate to create the distinctively flavored spirit we know as bourbon whiskey. Despite the unique flavor and cultural significance of "America's Spirit", little is known about the wood-distillate interaction that shapes bourbon whiskey. Here, we employed an inverse method to measure the loss of specific wood polysaccharides in the oak cask during aging for up to ten years. We found that the structural cell wall wood biopolymer, cellulose, was partially decrystallized by the charring process. This pyrolytic fracturing and subsequent exposure to the distillate was accompanied by a steady loss of sugars from the cellulose and hemicellulose fractions of the oak cask. Distinct layers of structural degradation and product release from within the barrel stave are formed over time as the distillate expands into and contracts from the barrel staves. This complex, wood-sugar release process is likely associated with the time-dependent generation of the unique palate of bourbon whiskey.

16.
J Vis Exp ; (134)2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29757282

RESUMEN

Chemical genetics is increasingly being employed to decode traits in plants that may be recalcitrant to traditional genetics due to gene redundancy or lethality. However, the probability of a synthetic small molecule being bioactive is low; therefore, thousands of molecules must be tested in order to find those of interest. Liquid handling robotics systems are designed to handle large numbers of samples, increasing the speed with which a chemical library can be screened in addition to minimizing/standardizing error. To achieve a high-throughput forward chemical genetics screen of a library of 50,000 small molecules on Arabidopsis thaliana (Arabidopsis), protocols using a bench-top multichannel liquid handling robot were developed that require minimal technician involvement. With these protocols, 3,271 small molecules were discovered that caused visible phenotypic alterations. 1,563 compounds induced short roots, 1,148 compounds altered coloration, 383 compounds caused root hair and other, non-categorized, alterations, and 177 compounds inhibited germination.


Asunto(s)
Arabidopsis/química , Ingeniería Química/métodos , Robótica/métodos
17.
Pest Manag Sci ; 74(4): 878-884, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29087620

RESUMEN

BACKGROUND: Cellulose biosynthesis inhibitors (CBIs) are pre-emergence herbicides that inhibit anisotropic cell expansion resulting in a severely swollen and stunted growth phenotype. Resistance to group 21 CBIs, such as isoxaben, is conferred by missense mutations in CELLOSE SYNTHASE A (CesA) genes required for primary cell wall synthesis, concluding that this is their in vivo target. RESULTS: Herein, we show that grasses exhibit tolerance to group 21 CBIs and explore the mechanism of tolerance to isoxaben in the grass Brachypodium distachyon (L.). Comparative genomics failed to identify synonymous point mutations that have been found to confer isoxaben resistance in the dicot Arabidopsis thaliana (L.). Brachypodium did not metabolize 14 C-isoxaben. We next explored the role of grass-specific non-cellulosic cell wall components, specifically the hemicellulose polysaccharide mix linkage glucans (MLG), as a potential tolerance mechanism by compensating for the loss of cellulose during cell elongation. A partial-transcriptional knockdown T-DNA insertion was found in a key MLG synthesis gene, Cellulose synthase-like F6 (CslF6) and this mutant was found to be 2.1 times more sensitive to isoxaben than wild-type plants. CONCLUSION: These data suggest that the composition and compensatory response of grass cell walls may be a factor in conferring tolerance to group 21 CBIs. © 2017 Society of Chemical Industry.


Asunto(s)
Benzamidas/farmacología , Brachypodium/efectos de los fármacos , Celulosa/antagonistas & inhibidores , Resistencia a los Herbicidas , Herbicidas/farmacología , Brachypodium/fisiología , Pared Celular/efectos de los fármacos , Pared Celular/fisiología , Celulosa/biosíntesis
18.
Sci Rep ; 7(1): 5714, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28720840

RESUMEN

The biological function of sterol glucosides (SGs), the most abundant sterol derivatives in higher plants, remains uncertain. In an effort to improve our understanding of these membrane lipids we examined phenotypes exhibited by the roots of Arabidopsis (Arabidopsis thaliana) lines carrying insertions in the UDP-Glc:sterol glucosyltransferase genes, UGT80A2 and UGT80B1. We show that although ugt80A2 mutants exhibit significantly lower levels of total SGs they are morphologically indistinguishable from wild-type plants. In contrast, the roots of ugt80B1 mutants are only deficient in stigmasteryl glucosides but exhibit a significant reduction in root hairs. Sub-cellular investigations reveal that the plasma membrane cell fate regulator, SCRAMBLED (SCM), is mislocalized in ugt80B1 mutants, underscoring the aberrant root epidermal cell patterning. Live imaging of roots indicates that SCM:GFP is localized to the cytoplasm in a non cell type dependent manner instead of the hair (H) cell plasma membrane in these mutants. In addition, we provide evidence for the localization of the UGT80B1 enzyme in the plasma membrane. These data lend further support to the notion that deficiencies in specific SGs are sufficient to disrupt normal cell function and point to a possible role for SGs in cargo transport and/or protein targeting to the plasma membrane.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Glucosiltransferasas/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular , Glucósidos/metabolismo , Glucosiltransferasas/genética , Mutación , Fenotipo , Raíces de Plantas/genética , Esteroles
19.
J Exp Bot ; 67(2): 533-42, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26590309

RESUMEN

In the current review, we examine the growing number of existing Cellulose Biosynthesis Inhibitors (CBIs) and based on those that have been studied with live cell imaging we group their mechanism of action. Attention is paid to the use of CBIs as tools to ask fundamental questions about cellulose biosynthesis.


Asunto(s)
Pared Celular/metabolismo , Celulosa/antagonistas & inhibidores , Celulosa/biosíntesis , Herbicidas/farmacología , Plantas/efectos de los fármacos , Pared Celular/efectos de los fármacos , Plantas/metabolismo
20.
PLoS One ; 10(8): e0135382, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26305101

RESUMEN

Plant biomass from different species is heterogeneous, and this diversity in composition can be mined to identify materials of value to fuel and chemical industries. Agave produces high yields of energy-rich biomass, and the sugar-rich stem tissue has traditionally been used to make alcoholic beverages. Here, the compositions of Agave americana and Agave tequilana leaves are determined, particularly in the context of bioethanol production. Agave leaf cell wall polysaccharide content was characterized by linkage analysis, non-cellulosic polysaccharides such as pectins were observed by immuno-microscopy, and leaf juice composition was determined by liquid chromatography. Agave leaves are fruit-like--rich in moisture, soluble sugars and pectin. The dry leaf fiber was composed of crystalline cellulose (47-50% w/w) and non-cellulosic polysaccharides (16-22% w/w), and whole leaves were low in lignin (9-13% w/w). Of the dry mass of whole Agave leaves, 85-95% consisted of soluble sugars, cellulose, non-cellulosic polysaccharides, lignin, acetate, protein and minerals. Juice pressed from the Agave leaves accounted for 69% of the fresh weight and was rich in glucose and fructose. Hydrolysis of the fructan oligosaccharides doubled the amount of fermentable fructose in A. tequilana leaf juice samples and the concentration of fermentable hexose sugars was 41-48 g/L. In agricultural production systems such as the tequila making, Agave leaves are discarded as waste. Theoretically, up to 4000 L/ha/yr of bioethanol could be produced from juice extracted from waste Agave leaves. Using standard Saccharomyces cerevisiae strains to ferment Agave juice, we observed ethanol yields that were 66% of the theoretical yields. These data indicate that Agave could rival currently used bioethanol feedstocks, particularly if the fermentation organisms and conditions were adapted to suit Agave leaf composition.


Asunto(s)
Agave/química , Celulosa/química , Hojas de la Planta/química , Energía Renovable , Agave/metabolismo , Biomasa , Fermentación , Hidrólisis , Lignina/química , Hojas de la Planta/metabolismo , Polisacáridos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...