Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 122(11): 115001, 2019 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-30951344

RESUMEN

Plasma discharges with a negative triangularity (δ=-0.4) shape have been created in the DIII-D tokamak with a significant normalized beta (ß_{N}=2.7) and confinement characteristic of the high confinement mode (H_{98y2}=1.2) despite the absence of an edge pressure pedestal and no edge localized modes (ELMs). These inner-wall-limited plasmas have a similar global performance as a positive triangularity (δ=+0.4) ELMing H-mode discharge with the same plasma current, elongation and cross sectional area. For cases both of dominant electron cyclotron heating with T_{e}/T_{i}>1 and dominant neutral beam injection heating with T_{e}/T_{i}=1, turbulent fluctuations over radii 0.5<ρ<0.9 were reduced by 10-50% in the negative triangularity shape compared to the matching positive triangularity shape, depending on the radius and conditions.

2.
Phys Rev Lett ; 118(1): 015002, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-28106437

RESUMEN

Intrinsic toroidal rotation of the deuterium main ions in the core of the DIII-D tokamak is observed to transition from flat to hollow, forming an off-axis peak, above a threshold level of direct electron heating. Nonlinear gyrokinetic simulations show that the residual stress associated with electrostatic ion temperature gradient turbulence possesses the correct radial location and stress structure to cause the observed hollow rotation profile. Residual stress momentum flux in the gyrokinetic simulations is balanced by turbulent momentum diffusion, with negligible contributions from turbulent pinch. The prediction of the velocity profile by integrating the momentum balance equation produces a rotation profile that qualitatively and quantitatively agrees with the measured main-ion profile, demonstrating that fluctuation-induced residual stress can drive the observed intrinsic velocity profile.

3.
Phys Rev Lett ; 114(10): 105002, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25815938

RESUMEN

Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal that reduces the perpendicular electron flow there to near zero. These events occur simultaneously with an increase in the inner-wall magnetic response. These observations are consistent with strong resonant field penetration of n=2 fields at the onset of ELM suppression, based on extended MHD simulations using measured plasma profiles. Spontaneous transitions into (and out of) ELM suppression with a static applied n=2 field indicate competing mechanisms of screening and penetration of resonant fields near threshold conditions. Magnetic measurements reveal evidence for the unlocking and rotation of tearinglike structures as the plasma transitions out of ELM suppression.

4.
Phys Rev Lett ; 106(11): 115001, 2011 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21469867

RESUMEN

The first measurements of turbulent stresses and flows inside the separatrix of a tokamak H-mode plasma are reported, using a reciprocating multitip Langmuir probe at the DIII-D tokamak. A strong co-current rotation layer at the separatrix is found to precede intrinsic rotation development in the core. The measured fluid turbulent stresses transport toroidal momentum outward against the velocity gradient and thus try to sustain the edge layer. However, large kinetic stresses must exist to explain the net inward momentum transport leading to co-current core plasma rotation. The importance of such kinetic stresses is corroborated by the success of a simple orbit loss model, representing a purely kinetic mechanism, in the prediction of features of the edge corotation layer.

5.
Phys Rev Lett ; 101(19): 195005, 2008 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-19113280

RESUMEN

We present the first evidence for the existence of a neoclassical toroidal rotation driven in a direction counter to the plasma current by nonaxisymmetric, nonresonant magnetic fields. At high beta and with large injected neutral beam momentum, the nonresonant field torque slows down the plasma toward the neoclassical "offset" rotation rate. With small injected neutral beam momentum, the toroidal rotation is accelerated toward the offset rotation, with resulting improvement in the global energy confinement time. The observed magnitude, direction, and radial profile of the offset rotation are consistent with neoclassical theory predictions.

6.
Phys Rev Lett ; 92(23): 235001, 2004 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-15245162

RESUMEN

Changes of the toroidal plasma rotation induced by directed waves in the ion-cyclotron range of frequencies (ICRF) have been identified experimentally for the first time on the JET tokamak. The momentum carried by the waves is initially absorbed by fast resonating ions, which subsequently transfer it to the bulk plasma. Thus, the results provide evidence for the influence of ICRF heated fast ions on plasma rotation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...