Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Motor Control ; 27(1): 71-95, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36316008

RESUMEN

Cutaneous feedback from feet is involved in regulation of muscle activity during locomotion, and the lack of this feedback results in motor deficits. We tested the hypothesis that locomotor changes caused by local unilateral anesthesia of paw pads in the cat could be reduced/reversed by electrical stimulation of cutaneous and proprioceptive afferents in the distal tibial nerve during stance. Several split-belt conditions were investigated in four adult female cats. In addition, we investigated the effects of similar distal tibial nerve stimulation on overground walking of one male cat that had a transtibial, bone-anchored prosthesis for 29 months and, thus, had no cutaneous/proprioceptive feedback from the foot. In all treadmill conditions, cats walked with intact cutaneous feedback (control), with right fore- and hindpaw pads anesthetized by lidocaine injections, and with a combination of anesthesia and electrical stimulation of the ipsilateral distal tibial nerve during the stance phase at 1.2× threshold of afferent activation. Electrical stimulation of the distal tibial nerve during the stance phase of walking with anesthetized ipsilateral paw pads reversed or significantly reduced the effects of paw pad anesthesia on several kinematic variables, including lateral center of mass shift, cycle and swing durations, and duty factor. We also found that stimulation of the residual distal tibial nerve in the prosthetic hindlimb often had different effects on kinematics compared with stimulation of the intact hindlimb with paw anesthetized. We suggest that stimulation of cutaneous and proprioceptive afferents in the distal tibial nerve provides functionally meaningful motion-dependent sensory feedback, and stimulation responses depend on limb conditions.


Asunto(s)
Anestesia , Caminata , Animales , Masculino , Femenino , Humanos , Caminata/fisiología , Locomoción/fisiología , Estimulación Eléctrica , Nervio Tibial
2.
J Pers Med ; 12(1)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35055390

RESUMEN

(1) Background: Non-invasive neuromodulation is a promising alternative to medication or deep-brain stimulation treatment for Parkinson's Disease or essential tremor. In previous work, we developed and tested a wearable system that modulates tremor via the non-invasive, electrical stimulation of peripheral nerves. In this article, we examine the proper range and the effects of various stimulation parameters for phase-locked stimulation. (2) Methods: We recruited nine participants with essential tremor. The subjects performed a bean-transfer task that mimics an eating activity to elicit kinetic tremor while using the wearable stimulation system. We examined the effects of stimulation with a fixed duty cycle, at different stimulation amplitudes and frequencies. The epochs of stimulation were locked to one of four phase positions of ongoing tremor, as measured with an accelerometer. We analyzed stimulation-evoked changes of the frequency and amplitude of tremor. (3) Results: We found that the higher tremor amplitude group experienced a higher rate of tremor power reduction (up to 65%) with a higher amplitude of stimulation when the stimulation was applied at the ±peak of tremor phase. (4) Conclusions: The stimulation parameter can be adjusted to optimize tremor reduction, and this study lays the foundation for future large-scale parameter optimization experiments for personalized peripheral nerve stimulation.

3.
IEEE J Biomed Health Inform ; 26(5): 2169-2179, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34851839

RESUMEN

Current methods of evaluating essential tremor (ET) either rely on subjective ratings or use limited tremor metrics (i.e., severity/amplitude and frequency). In this study, we explored performance metrics from Fitts' law tasks that replicate and expand existing tremor metrics, to enable low-cost, home-based tremor quantification and analyze the cursor movements of individuals using a 3D mouse while performing a collection of drawing tasks. We analyzed the 3D mouse cursor movements of 11 patients with ET and three controls, on three computer-based tasks-a spiral navigation (SPN) task, a rectangular track navigation (RTN) task, and multi-directional tapping/clicking (MDT)-with several performance metrics (i.e., outside area (OA), throughput (TP in Fitts' law), path efficiency (PE), and completion time (CT). Using an accelerometer and scores from the Essential Tremor Rating Assessment Scale (TETRAS), we correlated the proposed performance metrics with the baseline tremor metrics and found that the OA of the SPN and RTN tasks were strongly correlated with baseline tremor severity (R2 = 0.57, and R2 = 0.83). We also found that the TP in the MDT tasks were strongly correlated with tremor frequency (R2 = 0.70). In addition, as the OA of the SPN and RTN tasks was correlated with tremor severity and frequency, it may represent an independent metric that increases the dimensionality of the characterization of an individual's tremor. Thus, this pilot study of the analysis of those with ET-associated tremor performing Fitts' law tasks demonstrates the feasibility of introducing a new tremor metric that can be expanded for repeatable multi-dimensional data analyses.


Asunto(s)
Temblor Esencial , Desempeño Psicomotor , Benchmarking , Temblor Esencial/diagnóstico , Humanos , Movimiento , Proyectos Piloto , Temblor
4.
IEEE J Transl Eng Health Med ; 8: 2000111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32596064

RESUMEN

OBJECTIVE: Currently available treatments for kinetic tremor can cause intolerable side effects or be highly invasive and expensive. Even though several studies have shown the positive effects of external feedback (i.e., electrical stimulation) for suppressing tremor, such approaches have not been fully integrated into wearable real-time feedback systems. METHOD: We have developed a wireless wearable stimulation system that analyzes upper limb tremor using a three-axis accelerometer and that modulates/attenuates tremor using peripheral-nerve electrical stimulation with adjustable stimulation parameters and a real-time tremor detection algorithm. We outfitted nine subjects with tremor with a wearable system and a set of surface electrodes placed on the skin overlying the radial nerve and tested the effects of stimulation with nine combinations of parameters for open- and closed-loop stimulation on tremor. To quantify the effects of the stimulation, we measured tremor movements, and analyzed the dominant tremor frequency and tremor power. RESULTS: Baseline tremor power gradually decreased over the course of 18 stimulation trials. During the last trial, compared with the control trial, the reduction rate of tremor power was 42.17 ± 3.09%. The dominant tremor frequency could be modulated more efficiently by phase-locked closed-loop stimulation. The tremor power was equally reduced by open- and closed-loop stimulation. CONCLUSION: Peripheral nerve stimulation significantly affects tremor, and stimulation parameters need to be optimized to modulate tremor metrics. Clinical Impact: This preliminary study lays the foundation for future studies that will evaluate the efficacy of the proposed closed-loop peripheral nerve stimulation method in a larger group of patients with kinetic tremor.

5.
Sci Rep ; 9(1): 19049, 2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31836817

RESUMEN

Electrical stimulation to segmental dorsal cutaneous nerves (DCNs) activates a nociceptive sensorimotor reflex and the same afferent stimulation also evokes blood pressure (BP) and heart rate (HR) responses in rats. To investigate the relationship between those cardiovascular responses and the activation of nociceptive afferents, we analyzed BP and HR responses to electrical stimulations at each DCN from T6 to L1 at 0.5 mA to activate A-fiber alone or 5 mA to activate both A- and C-fibers at different frequencies. Evoked cardiovascular responses showed a decrease and then an increase in BP and an increase and then a plateau in HR. Segmentally, both cardiovascular responses tended to be larger when evoked from the more rostral DCNs. Stimulation frequency had a larger effect on cardiovascular responses than the rostrocaudal level of the DCN input. Stimulation strength showed a large effect on BP changes dependent on C-fibers whereas HR changes were dependent on A-fibers. Additional A-fiber activation by stimulating up to 4 adjacent DCNs concurrently, but only at 0.5 mA, affected HR but not BP. These data support that cutaneous nociceptive afferent subtypes preferentially contribute to different cardiovascular responses, A-fibers to HR and C-fibers to BP, with temporal (stimulation frequency) and spatial (rostrocaudal level) dynamics.


Asunto(s)
Sistema Cardiovascular/metabolismo , Nocicepción/fisiología , Reflejo/fisiología , Piel/inervación , Médula Espinal/fisiología , Animales , Presión Sanguínea/fisiología , Estimulación Eléctrica , Femenino , Frecuencia Cardíaca/fisiología , Músculos/fisiología , Fibras Nerviosas Mielínicas/fisiología , Ratas Long-Evans
6.
J Exp Biol ; 222(Pt 14)2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31308054

RESUMEN

Cutaneous sensory feedback from the paw pads plays an important role in regulating body balance, especially in challenging environments like ladder or slope walking. Here, we investigated the contribution of cutaneous sensory feedback from the paw pads to balance control in cats stepping on a split-belt treadmill. Forepaws and hindpaws were anesthetized unilaterally using lidocaine injections. We evaluated body balance in intact and compromised cutaneous feedback conditions during split-belt locomotion with belt-speed ratios of 0.5, 1.0, 1.5 and 2.0. Measures of body balance included step width, relative duration of limb support phases, lateral bias of center of mass (CoM) and margins of static and dynamic stability. In the intact condition, static and dynamic balance declined with increasing belt-speed ratio as a result of a lateral shift of the CoM toward the borders of support on the slower moving belt. Anesthesia of the ipsilateral paws improved locomotor balance with increasing belt-speed ratios by reversing the CoM shift, decreasing the relative duration of the two-limb support phase, increasing the duration of four- or three-limb support phases, and increasing the hindlimb step width and static stability. We observed no changes in most balance measures in anesthetized conditions during tied-belt locomotion at 0.4 m s-1 CoM lateral displacements closely resembled those of the inverted pendulum and of human walking. We propose that unilaterally compromised cutaneous feedback from the paw pads is compensated for by improving lateral balance and by shifting the body toward the anesthetized paws to increase tactile sensation during the stance phase.


Asunto(s)
Gatos/fisiología , Retroalimentación Sensorial , Locomoción , Equilibrio Postural , Animales , Femenino
7.
J Neurophysiol ; 122(2): 616-631, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31166824

RESUMEN

The cutaneus trunci muscle (CTM) reflex produces a skin "shrug" in response to pinch on a rat's back through a three-part neural circuit: 1) A-fiber and C-fiber afferents in segmental dorsal cutaneous nerves (DCNs) from lumbar to cervical levels, 2) ascending propriospinal interneurons, and 3) the CTM motoneuron pool located at the cervicothoracic junction. We recorded neurograms from a CTM nerve branch in response to electrical stimulation. The pulse trains were delivered at multiple DCNs (T6-L1), on both sides of the midline, at two stimulus strengths (0.5 or 5 mA, to activate Aδ fibers or Aδ and C fibers, respectively) and four stimulation frequencies (1, 2, 5, or 10 Hz) for 20 s. We quantified both the temporal dynamics (i.e., latency, sensitization, habituation, and frequency dependence) and the spatial dynamics (spinal level) of the reflex. The evoked responses were time-windowed into Early, Mid, Late, and Ongoing phases, of which the Mid phase, between the Early (Aδ fiber mediated) and Late (C fiber mediated) phases, has not been previously identified. All phases of the response varied with stimulus strength, frequency, history, and DCN level/side stimulated. In addition, we observed nociceptive characteristics like C fiber-mediated sensitization (wind-up) and habituation. Finally, the range of latencies in the ipsilateral responses were not very large rostrocaudally, suggesting a myelinated neural path within the ipsilateral spinal cord for at least the A fiber-mediated Early-phase response. Overall, these results demonstrate that the CTM reflex shares the temporal dynamics in other nociceptive reflexes and exhibits spatial (segmental and lateral) dynamics not seen in those reflexes.NEW & NOTEWORTHY We have physiologically studied an intersegmental reflex exploring detailed temporal, stimulus strength-based, stimulation history-dependent, lateral and segmental quantification of the reflex responses to cutaneous nociceptive stimulations. We found several physiological features in this reflex pathway, e.g., wind-up, latency changes, and somatotopic differences. These physiological observations allow us to understand how the anatomy of this reflex may be organized. We have also identified a new phase of this reflex, termed the "mid" response.


Asunto(s)
Músculos de la Espalda/fisiología , Potenciales Evocados/fisiología , Habituación Psicofisiológica/fisiología , Fibras Nerviosas Mielínicas/fisiología , Fibras Nerviosas Amielínicas/fisiología , Nocicepción/fisiología , Reflejo/fisiología , Médula Espinal/fisiología , Animales , Estimulación Eléctrica , Femenino , Ratas , Ratas Long-Evans
8.
Front Neurosci ; 12: 471, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30057524

RESUMEN

We developed a prototype of a neural, powered, transtibial prosthesis for the use in a feline model of prosthetic gait. The prosthesis was designed for attachment to a percutaneous porous titanium implant integrated with bone, skin, and residual nerves and muscles. In the benchtop testing, the prosthesis was fixed in a testing rig and subjected to rhythmic vertical displacements and interactions with the ground at a cadence corresponding to cat walking. Several prosthesis functions were evaluated. They included sensing ground contact, control of transitions between the finite states of prosthesis loading, and a closed-loop modulation of the linear actuator gain in each loading cycle. The prosthetic design parameters (prosthesis length = 55 mm, mass = 63 g, peak extension moment = 1 Nm) corresponded closely to those of the cat foot-ankle with distal shank and the peak ankle extension moment during level walking. The linear actuator operated the prosthetic ankle joint using inputs emulating myoelectric activity of residual muscles. The linear actuator gain was modulated in each cycle to minimize the difference between the peak of ground reaction forces (GRF) recorded by a ground force sensor and a target force value. The benchtop test results demonstrated a close agreement between the GRF peaks and patterns produced by the prosthesis and by cats during level walking.

9.
IEEE Trans Neural Syst Rehabil Eng ; 25(9): 1440-1452, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28113946

RESUMEN

We have developed a stretchablemicroneedle electrode array (sMEA) to stimulate andmeasure the electrical activity of muscle across multiple sites. The technology provides the signal fidelity and spatial resolution of intramuscular electrodesacross a large area of tissue. Our sMEA is composed of a polydimethylsiloxane (PDMS) substrate, conductive-PDMS traces, and stainless-steel penetrating electrodes. The traces and microneedles maintain a resistance of less than 10 [Formula: see text] when stretched up to a ~63% tensile strain, which allows for the full range of physiological motion of felinemuscle. The device and its constituent materials are cytocompatible for at least 28 days in vivo. When implanted in vivo, the device measures electromyographic (EMG) activity with clear compound motor unit action potentials. The sMEA also maintains a stable connection with moving muscle while electrically stimulating the tissue. This technology has direct application to wearable sensors, neuroprostheses, and electrophysiological studies of animals and humans.


Asunto(s)
Estimulación Eléctrica/instrumentación , Electrodos Implantados , Electromiografía/instrumentación , Microelectrodos , Fibras Musculares Esqueléticas/fisiología , Agujas , Potenciales de Acción/fisiología , Animales , Células Cultivadas , Módulo de Elasticidad , Impedancia Eléctrica , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Análisis por Micromatrices/instrumentación , Neuronas Motoras/fisiología , Contracción Muscular/fisiología , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Transmisión Sináptica/fisiología , Resistencia a la Tracción
10.
Processes (Basel) ; 5(4)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34367934

RESUMEN

Differential activation of neuronal populations can improve the efficacy of clinical devices such as sensory or cortical prostheses. Improving stimulus specificity will facilitate targeted neuronal activation to convey biologically realistic percepts. In order to deliver more complex stimuli to a neuronal population, stimulus optimization techniques must be developed that will enable a single electrode to activate subpopulations of neurons. However, determining the stimulus needed to evoke targeted neuronal activity is challenging. To find the most selective waveform for a particular population, we apply an optimization-based search routine, Powell's conjugate direction method, to systematically search the stimulus waveform space. This routine utilizes a 1-D sigmoid activation model and a 2-D strength-duration curve to measure neuronal activation throughout the stimulus waveform space. We implement our search routine in both an experimental study and a simulation study to characterize potential stimulus-evoked populations and the associated selective stimulus waveform spaces. We found that for a population of five neurons, seven distinct sub-populations could be activated. The stimulus waveform space and evoked neuronal activation curves vary with each new combination of neuronal culture and electrode array, resulting in a unique selectivity space. The method presented here can be used to efficiently uncover the selectivity space, focusing experiments in regions with the desired activation pattern.

11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 6166-6169, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28269660

RESUMEN

Assessments of tremor characteristics by movement disorder physicians are usually done at single time points in clinic settings, so that the description of the tremor does not take into account the dependence of the tremor on specific behavioral situations. Moreover, treatment-induced changes in tremor or behavior cannot be quantitatively tracked for extended periods of time. We developed a wearable tremor measurement system with tremor and activity recognition algorithms for long-term upper limb behavior tracking, to characterize tremor characteristics and treatment effects in their daily lives. In this pilot study, we collected sensor data of arm movement from three healthy participants using a wrist device that included a 3-axis accelerometer and a 3-axis gyroscope, and classified tremor and activities within scenario tasks which resembled real life situations. Our results show that the system was able to classify the tremor and activities with 89.71% and 74.48% accuracies during the scenario tasks. From this results, we expect to expand our tremor and activity measurement in longer time period.


Asunto(s)
Movimiento , Temblor/fisiopatología , Extremidad Superior/fisiopatología , Algoritmos , Fenómenos Biomecánicos , Voluntarios Sanos , Humanos , Proyectos Piloto , Extremidad Superior/fisiología
12.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 2299-2302, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28324963

RESUMEN

Abnormal oscillatory movement (i.e. tremor) is usually evaluated with qualitative assessment by clinicians, and quantified with subjective scoring methods. These methods are often inaccurate. We utilized a quantitative and standardized task based on the Fitts' law to assess the performance of arm movement with tremor by controlling a gyration mouse on a computer. The experiment included the center-out tapping (COT) and rectangular track navigation (RTN) tasks. We report the results of a pilot study in which we collected the performance for healthy participants in whom tremor was simulated by imposing oscillatory movements to the arm with a vibration motor. We compared their movement speed and accuracy with and without the artificial "tremor." We found that the artificial tremor significantly affected the path efficiency for both tasks (COT: 56.8 vs. 46.2%, p <; 0.05; RTN: 94.2 vs. 67.4%, p <; 0.05), and we were able to distinguish the presence of tremor. From this result, we expect to quantify severity of tremor and the effectiveness therapy for tremor patients.


Asunto(s)
Enfermedades del Sistema Nervioso , Temblor , Brazo , Periféricos de Computador , Humanos , Movimiento , Proyectos Piloto , Desempeño Psicomotor , Análisis y Desempeño de Tareas
13.
Front Neuroanat ; 9: 87, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26257609

RESUMEN

Three-dimensional (3-D) image analysis techniques provide a powerful means to rapidly and accurately assess complex morphological and functional interactions between neural cells. Current software-based identification methods of neural cells generally fall into two applications: (1) segmentation of cell nuclei in high-density constructs or (2) tracing of cell neurites in single cell investigations. We have developed novel methodologies to permit the systematic identification of populations of neuronal somata possessing rich morphological detail and dense neurite arborization throughout thick tissue or 3-D in vitro constructs. The image analysis incorporates several novel automated features for the discrimination of neurites and somata by initially classifying features in 2-D and merging these classifications into 3-D objects; the 3-D reconstructions automatically identify and adjust for over and under segmentation errors. Additionally, the platform provides for software-assisted error corrections to further minimize error. These features attain very accurate cell boundary identifications to handle a wide range of morphological complexities. We validated these tools using confocal z-stacks from thick 3-D neural constructs where neuronal somata had varying degrees of neurite arborization and complexity, achieving an accuracy of ≥95%. We demonstrated the robustness of these algorithms in a more complex arena through the automated segmentation of neural cells in ex vivo brain slices. These novel methods surpass previous techniques by improving the robustness and accuracy by: (1) the ability to process neurites and somata, (2) bidirectional segmentation correction, and (3) validation via software-assisted user input. This 3-D image analysis platform provides valuable tools for the unbiased analysis of neural tissue or tissue surrogates within a 3-D context, appropriate for the study of multi-dimensional cell-cell and cell-extracellular matrix interactions.

14.
Front Biosci (Landmark Ed) ; 17(6): 2158-80, 2012 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-22652770

RESUMEN

The neonatal rodent spinal cord maintained in vitro is a powerful model system to understand the central properties of spinal circuits generating mammalian locomotion. We describe three enabling approaches that incorporate afferent input and attached hindlimbs. (i) Sacral dorsal column stimulation recruits and strengthens ongoing locomotor-like activity, and implementation of a closed positive-feedback paradigm is shown to support its stimulation as an untapped therapeutic site for locomotor modulation. (ii) The spinal cord hindlimbs-restrained preparation allows suction electrode electromyographic recordings from many muscles. Inducible complex motor patterns resemble natural locomotion, and insights into circuit organization are demonstrated during spontaneous motor burst 'deletions', or following sensory stimuli such as tail and paw pinch. (iii) The spinal cord hindlimbs-pendant preparation produces unrestrained hindlimb stepping. It incorporates mechanical limb perturbations, kinematic analyses, ground reaction force monitoring, and the use of treadmills to study spinal circuit operation with movement-related patterns of sensory feedback while providing for stable whole-cell recordings from spinal neurons. Such techniques promise to provide important additional insights into locomotor circuit organization.


Asunto(s)
Locomoción/fisiología , Médula Espinal/fisiología , Vías Aferentes , Animales , Estimulación Eléctrica , Electromiografía , Retroalimentación Fisiológica , Miembro Posterior/inervación , Técnicas In Vitro , Ratones , Modelos Neurológicos , Neurofisiología/métodos , Ratas
15.
Front Neuroeng ; 4: 5, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21541256

RESUMEN

By electrically stimulating the spinal cord, it is possible to activate functional populations of neurons that modulate motor and sensory function. One method for accessing these neurons is via their associated axons, which project as functionally segregated longitudinal columns of white-matter funiculi (i.e., spinal tracts). To stimulate spinal tracts without penetrating the cord, we have recently developed technology that enables close-proximity, multi-electrode contact with the spinal cord surface. Our stretchable microelectrode arrays (sMEAs) are fabricated using an elastomer polydimethylsiloxane substrate and can be wrapped circumferentially around the spinal cord to optimize electrode contact. Here, sMEAs were used to stimulate the surfaces of rat spinal cords maintained in vitro, and their ability to selectively activate axonal surface tracts was compared to rigid bipolar tungsten microelectrodes pressed firmly onto the cord surface. Along dorsal column tracts, the axonal response to sMEA stimulation was compared to that evoked by rigid microelectrodes through measurement of their evoked axonal compound action potentials (CAPs). Paired t-tests failed to reveal significant differences between the sMEA's and the rigid microelectrode's stimulus resolution, or in their ranges of evoked CAP conduction velocities. Additionally, dual-site stimulation using sMEA electrodes recruited spatially distinct populations of spinal axons. Site-specific stimulation of the ventrolateral funiculus - a tract capable of evoking locomotor-like activity - recruited ventral root efferent activity that spanned several spinal segments. These findings indicate that the sMEA stimulates the spinal cord surface with selectivity similar to that of rigid microelectrodes, while possessing potential advantages concerning circumferential contact and mechanical compatibility with the cord surface.

17.
Artículo en Inglés | MEDLINE | ID: mdl-21097165

RESUMEN

Functional electrical stimulation (FES) refers to the method by which sensory or motor functionality is restored through the use of coordinated stimulation of tissue. Our group has developed a mechanically conformable multielectrode array (cMEA) that can stimulate and record from the surface of muscles with high fidelity and low invasiveness, making the device well suited for various FES applications. The research presented here investigates the feasibility of using a cMEA to deliver asynchronous spatiotemporal stimulation patterns epimysially (on the surface of muscles). Specifically, we employ an interleaved stimulation protocol to achieve force responses with less fatigue and less ripple than those produced by standard simultaneous stimulation protocols delivered at high and low frequencies, respectively. This experimentation demonstrates that asynchronous spatiotemporal stimulation protocols delivered epimysially via a cMEA can improve the characteristics of the resulting force profiles.


Asunto(s)
Estimulación Eléctrica/métodos , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Músculos/fisiología , Animales , Anuros/fisiología , Electrodos
19.
IEEE Trans Biomed Eng ; 57(10): 2485-94, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20550983

RESUMEN

A method for fabricating polydimethylsiloxane (PDMS) based microelectrode arrays (MEAs) featuring novel conical-well microelectrodes is described. The fabrication technique is reliable and efficient, and facilitates controllability over both the depth and the slope of the conical wells. Because of the high-PDMS elasticity (as compared to other MEA substrate materials), this type of compliant MEA is promising for acute and chronic implantation in applications that benefit from conformable device contact with biological tissue surfaces and from minimal tissue damage. The primary advantage of the conical-well microelectrodes--when compared to planar electrodes--is that they provide an improved contact on tissue surface, which potentially provides isolation of the electrode microenvironment for better electrical interfacing. The raised wells increase the uniformity of current density distributions at both the electrode and tissue surfaces, and they also protect the electrode material from mechanical damage (e.g., from rubbing against the tissue). Using this technique, electrodes have been fabricated with diameters as small as 10 µm and arrays have been fabricated with center-to-center electrode spacings of 60 µm. Experimental results are presented, describing electrode-profile characterization, electrode-impedance measurement, and MEA-performance evaluation on fiber bundle recruitment in spinal cord white matter.


Asunto(s)
Dimetilpolisiloxanos/química , Estimulación Eléctrica/instrumentación , Prótesis Neurales , Diseño de Prótesis , Animales , Impedancia Eléctrica , Ensayo de Materiales , Microelectrodos , Ratas
20.
Artículo en Inglés | MEDLINE | ID: mdl-19964008

RESUMEN

To meet the emerging demand of high-throughput intimate interfaces in neuroscience research and neural prosthetics, a multilayer wiring interconnect technology for implementing high-density, integratable polydimethylsiloxane (PDMS) based conformable microelectrode arrays (MEAs) is developed. This technology has two parts: first, multilayer interconnects are fabricated within PDMS, which provides the potential for implementing high-density, large-capacity PDMS-based MEAs; second, interconnects are fabricated between PDMS and a substrate material, e.g., glass or silicon, which provides the potential for directly integrating PDMS-based MEAs with silicon-based ICs to achieve an integrated system solution for neural interfacing. Preliminary muscle surface recording experiments using a connector-integrated MEA have successfully demonstrated multichannel recording capability with good device conformability to the muscle surface during contraction. Important and promising applications will be found in neural prostheses, functional electrical stimulation (FES), and basic electrophysiology research.


Asunto(s)
Dimetilpolisiloxanos , Microelectrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...