Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Toxicol ; 44(7): 1040-1049, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38531109

RESUMEN

As part of the US Environmental Protection Agency's perfluoroalkyl and polyfluoroalkyl substances (PFAS) Action Plan, the agency is committed to increasing our understanding of the potential ecological effects of PFAS. The objective of these studies was to examine the developmental toxicity of PFAS using the laboratory model amphibian species Xenopus laevis. We had two primary aims: (1) to understand the developmental toxicity of a structurally diverse set of PFAS compounds in developing embryos and (2) to characterize the potential impacts of perfluorooctanesulfonic acid (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorooctanoic acid (PFOA), and hexafluoropropylene oxide-dimer acid (HFPO-DA a.k.a. GenX), on growth and thyroid hormone-controlled metamorphosis. We employed a combination of static renewal and flow-through exposure designs. Embryos were exposed to 17 structurally diverse PFAS starting at the midblastula stage through the completion of organogenesis (96 h). To investigate impacts on PFOS, PFOA, PFHxS, and HFPO-DA on development and metamorphosis, larvae were exposed from premetamorphosis (Nieuwkoop Faber stage 51 or 54) through pro metamorphosis. Of the PFAS tested in embryos, only 1H,1H,10H,10H-perfluorodecane-1,10-diol (FC10-diol) and perfluorohexanesulfonamide (FHxSA) exposure resulted in clear concentration-dependent developmental toxicity. For both of these PFAS, a significant increase in mortality was observed at 2.5 and 5 mg/L. For FC10-diol, 100% of the surviving embryos were malformed at 1.25 and 2.5 mg/L, while for FHxSA, a significant increase in malformations (100%) was observed at 2.5 and 5 mg/L. Developmental stage achieved was the most sensitive endpoint with significant effects observed at 1.25 and 0.625 mg/L for FC10-diol and FHxSA, respectively. In larval studies, we observed impacts on growth following exposure to PFHxS and PFOS at concentrations of 100 and 2.5 mg/L, respectively, while no impacts were observed in larvae when exposed to PFOA and HFPO-DA at concentration of 100 mg/L. Further, we did not observe impacts on thyroid endpoints in exposed larvae. These experiments have broadened our understanding of the impact of PFAS on anuran development.


Asunto(s)
Embrión no Mamífero , Fluorocarburos , Larva , Metamorfosis Biológica , Xenopus laevis , Animales , Xenopus laevis/embriología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Fluorocarburos/toxicidad , Embrión no Mamífero/efectos de los fármacos , Metamorfosis Biológica/efectos de los fármacos , Ácidos Alcanesulfónicos/toxicidad , Ácidos Sulfónicos/toxicidad , Relación Dosis-Respuesta a Droga , Caprilatos/toxicidad , Desarrollo Embrionario/efectos de los fármacos , Hormonas Tiroideas
2.
Toxicol In Vitro ; 95: 105762, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38072180

RESUMEN

The US Environmental Protection Agency is evaluating the ecological and toxicological effects of per- and polyfluorinated chemicals. A number of perfluorinated chemicals have been shown to impact the thyroid axis in vivo suggesting that the thyroid hormone system is a target of these chemicals. The objective of this study was to evaluate the activity of 136 perfluorinated chemicals at seven key molecular initiating events (MIE) within the thyroid axis using nine in vitro assays. The potential MIE targets investigated are Human Iodothyronine Deiodinase 1 (hDIO1), Human Iodothyronine Deiodinase 2 (hDIO2), Human Iodothyronine Deiodinase 3 (hDIO3), Xenopus Iodothyronine Deiodinase (xDIO3); Human Iodotyrosine Deiodinase (hIYD), Xenopus Iodotyrosine Deiodinase (xIYD), Human Thyroid Peroxidase (hTPO); and the serum binding proteins Human Transthyretin (hTTR) and Human Thyroxine Binding Globulin (hTBG). Of the 136 PFAS chemicals tested, 85 had sufficient activity to produce a half-maximal effect concentration (EC50) in at least one of the nine assays. In general, most of these PFAS chemicals did not have strong potency towards the seven MIEs examined, apart from transthyretin binding, for which several PFAS had potency similar to the respective model inhibitor. These data sets identify potentially active PFAS chemicals to prioritize for further testing in orthogonal in vitro assays and at higher levels of biological organization to evaluate their capacity for altering the thyroid hormone system and causing potential adverse health and ecological effects.


Asunto(s)
Fluorocarburos , Prealbúmina , Humanos , Prealbúmina/farmacología , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/farmacología , Yoduro Peroxidasa , Glándula Tiroides/metabolismo , Fluorocarburos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA