Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(8): 6416-6423, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36779815

RESUMEN

A chiral 3D coordination compound, [Gd2(L)2(ox)2(H2O)2], arranged around a dinuclear Gd unit has been characterized by X-ray photoemission and X-ray absorption measurements in the context of density functional theory studies. Core level photoemission of the Gd 5p multiplet splittings indicates that spin orbit coupling dominates over j-J coupling evident in the 5p core level spectra of Gd metal. Indications of spin-orbit coupling are consistent with the absence of inversion symmetry due to the ligand field. Density functional theory predicts antiferromagnet alignment of the Gd2 dimers and a band gap of the compound consistent with optical absorption.

2.
J Phys Condens Matter ; 34(44)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-35998608

RESUMEN

Applications of quantum information science (QIS) generally rely on the generation and manipulation of qubits. Still, there are ways to envision a device with a continuous readout, but without the entangled states. This concise perspective includes a discussion on an alternative to the qubit, namely the solid-state version of the Mach-Zehnder interferometer, in which the local moments and spin polarization replace light polarization. In this context, we provide some insights into the mathematics that dictates the fundamental working principles of quantum information processes that involve molecular systems with large magnetic anisotropy. Transistors based on such systems lead to the possibility of fabricating logic gates that do not require entangled states. Furthermore, some novel approaches, worthy of some consideration, exist to address the issues pertaining to the scalability of quantum devices, but face the challenge of finding the suitable materials for desired functionality that resemble what is sought from QIS devices.

3.
Beilstein J Nanotechnol ; 9: 2775-2787, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30498650

RESUMEN

The synthesis and characterization of six new lanthanide networks [Ln(L)(ox)(H2O)] with Ln = Eu3+, Gd3+, Tb3+, Dy3+, Ho3+ and Yb3+ is reported. They were synthesized by solvo-ionothermal reaction of lanthanide nitrate Ln(NO3)3·xH2O with the 1,3-bis(carboxymethyl)imidazolium [HL] ligand and oxalic acid (H2ox) in a water/ethanol solution. The crystal structure of these compounds has been solved on single crystals and the magnetic and luminescent properties have been investigated relying on intrinsic properties of the lanthanide ions. The synthetic strategy has been extended to mixed lanthanide networks leading to four isostructural networks of formula [Tb1- x Eu x (L)(ox)(H2O)] with x = 0.01, 0.03, 0.05 and 0.10. These materials were assessed as luminescent ratiometric thermometers based on the emission intensities of ligand, Tb3+ and Eu3+. The best sensitivities were obtained using the ratio between the emission intensities of Eu3+ (5D0→7F2 transition) and of the ligand as the thermometric parameter. [Tb0.97Eu0.03(L)(ox)(H2O)] was found to be one of the best thermometers among lanthanide-bearing coordination polymers and metal-organic frameworks, operative in the physiological range with a maximum sensitivity of 1.38%·K-1 at 340 K.

4.
Chem Sci ; 9(35): 7104-7114, 2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30310631

RESUMEN

Microwave-assisted functionalization of the layered Aurivillius phase Bi2SrTa2O9 by alcohols is thoroughly investigated. The grafting of linear aliphatic and bulky alcohols is studied as a function of the starting material, underlining the importance of the prefunctionalization of the layered perovskite, for instance by butylamine. In addition, the functionalization by α,ω-alkanediols is explored. α,ω-alkanediols bearing long alkyl chains (n C > 3) adopt an unprecedented pillaring arrangement, whereas 1,3-propanediol and ethyleneglycol adopt a bilayer arrangement, only one out of the two hydroxyl groups being coordinated. Finally, the reactivities of alcohols and amines towards insertion are compared: the preferential reactivity of the two functional groups appears to be strongly dependent of the reaction conditions, and especially of the water content. This study is further extended to the case of amino-alcohol insertion. In this case, the amine group is preferentially bound, but it is possible to control the grafting of the alcohol moiety, thus going from a bilayer arrangement to a pillaring one. This work is of particular importance to be able to functionalize easily and rapidly layered oxides with elaborated molecules, bearing several different potentially reactive groups.

5.
Inorg Chem ; 55(19): 9790-9797, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27618400

RESUMEN

A new strategy for the functionalization of layered perovskites is presented, based on the in situ post-synthesis modification of a prefunctionalized phase by copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC). The microwave-assisted protonation and grafting of an alkyne alcohol provides the alkyne-functionalized precursor within a few hours, starting from Bi2SrTa2O9. The subsequent microwave-assisted in situ "click reaction" allows the post-synthesis modification of the precursor within ∼2 h, providing a layered perovskite functionalized by an alcohol-grafted 1,4-disubstituted-1H-1,2,3-triazole. Two compounds are described here, bearing an aliphatic and an aromatic substituent, which illustrates the general application of the method. This work opens new perspectives for the functionalization of layered perovskites, going beyond mere insertion/grafting reactions, and thus broadens the design possibilities and the range of applications of these hybrid systems.

6.
Inorg Chem ; 55(17): 8697-705, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27509393

RESUMEN

Four uranyl-bearing coordination polymers (1-4) have been hydrothermally synthesized in the presence of the zwitterionic 1,3-bis(carboxymethyl)imidazolium (= imdc) anion as organic linkers after reaction at 150 °C. At low pH (0.8-3.1), the form 1 ((UO2)2(imdc)2(ox)·3H2O; ox stands for oxalate group) has been identified. Its crystal structure (XRD analysis) consists of the 8-fold-coordinated uranyl centers linked to each other through the imdc ligand together with oxalate species coming from the partial decomposition of the imdc molecule. The resulting structure is based on one-dimensional infinite ribbons intercalated by free water molecules. By adding NaOH solution, a second form 2 is observed for pH 1.9-3.9 but in a mixture with phase 1. The pure phase of 2 is obtained after a hydrothermal treatment at 120 °C. It corresponds to a double-layered network (UO2(imdc)2) composed of 7-fold-coordinated uranyl cations linked via the imdc ligands. In the same pH range, a third phase ((UO2)3O2(H2O)(imdc)·H2O, 3) is formed: it is composed of hexanuclear units of 7-fold- and 8-fold-coordinated uranyl cations, connected via the imdc molecules in a layered assembly. At higher pH, the chain-like solid (UO2)3O(OH)3(imdc)·2H2O (4) is observed and composed of the infinite edge-sharing uranyl-centered pentagonal bipyramidal polyhedra. As a function of pH, uranyl nuclearity increases from discrete 8- or 7-fold uranyl centers (1, 2) to hexanuclear bricks (3) and then infinite chains in 4 (built up from the hexameric fragments found in 3). This observation emphasized the influence of the hydrolysis reaction occurring between uranyl centers. The compounds have been further characterized by thermogravimetric analysis, infrared, and luminescence spectroscopy.

7.
Inorg Chem ; 55(8): 4039-46, 2016 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-27042754

RESUMEN

A new method of acidification and subsequent functionalization of the Aurivillius-phase Bi2SrTa2O9 (BST), using microwave irradiation, was developed. This method enables to obtain hybridized phases from layered BST. Functionalization of BST by various kinds of amines and diamines can be achieved in a few hours only, compared to much longer time (over a week) using conventional heating. Good crystallinity of the compounds is kept. In addition, a microwave-assisted preintercalation strategy was developed, allowing inserting new amines (bearing cyclic or aromatic groups) between the oxide layers previously unseen in this type of compound. This work opens new perspectives for the fast and easy functionalization of layered oxides with more elaborated molecules.

8.
Chemistry ; 21(47): 16906-16, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26429800

RESUMEN

Mesoporous silica monoliths with various ordered nanostructures containing transition metal M(2+) cations in variable amounts were elaborated and studied. A phase diagram depicting the different phases as a function of the M(2+) salt/tetramethyl orthosilicate (TMOS) and surfactant P123/TMOS ratios was established. Thermal treatment resulted in mesoporous monoliths containing isolated, accessible M(2+) species or condensed metal oxides, hydroxides, and salts, depending on the strength of the interactions between the metal species and the ethylene oxide units of P123. The ordered mesoporosity of the monoliths containing accessible M(2+) ions was used as a nanoreactor for the elaboration of various transition metal compounds (Prussian blue analogues, Hofmann compounds, metal-organic frameworks), and this opens the way to the elaboration of a large range of nanoparticles of multifunctional materials.

9.
Inorg Chem ; 53(2): 1184-94, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24400974

RESUMEN

A series of new hybrid multilayers has been synthesized by insertion-grafting of transition metal (Cu(II), Co(II), Ni(II), and Zn(II)) tetrasulfonato phthalocyanines between layers of Cu(II) and Co(II) simple hydroxides. The structural and spectroscopic investigations confirm the formation of new layered hybrid materials in which the phthalocyanines act as pillars between the inorganic layers. The magnetic investigations show that all copper hydroxide-based compounds behave similarly, presenting an overall antiferromagnetic behavior with no ordering down to 1.8 K. On the contrary, the cobalt hydroxide-based compounds present a ferrimagnetic ordering around 6 K, regardless of the nature of the metal phthalocyanine between the inorganic layers. The latter observation points to strictly dipolar interactions between the inorganic layers. The amplitude of the dipolar field has been evaluated from X-band and Q-band EPR spectroscopy investigation (Bdipolar ≈ 30 mT).

10.
Materials (Basel) ; 5(3): 385-403, 2012 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-28817053

RESUMEN

The research of new molecular materials able to replace classical solid materials in electronics has attracted growing attention over the past decade. Among these compounds photoswitchable Prussian blue analogues (PBA) are particularly interesting for the elaboration of new optical memories. However these coordination polymers are generally synthesised as insoluble powders that cannot be integrated into a real device. Hence their successful integration into real applications depends on an additional processing step. Nanostructured oxides elaborated by sol-gel chemistry combined with surfactant micelle templating can be used as nanoreactors to confine PBA precipitation and organize the functional nano-objects in the three dimensions of space. In this work we present the elaboration of different CoFe PBA/silica nanocomposites. Our synthetic procedure fully controls the synthesis of PBA in the porosity of the silica matrix from the insertion of the precursors up to the formation of the photomagnetic compound. We present results on systems from the simplest to the most elaborate: from disordered xerogels to ordered nanostructured films passing through mesoporous monoliths.

11.
Dalton Trans ; 40(39): 9977-88, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21881660

RESUMEN

Functional hybrid materials on the basis of inorganic hosts and ionic liquids (ILs) as guests hold promise for a virtually unlimited number of applications. In particular, the interaction and the combination of properties of a defined inorganic matrix and a specific IL could lead to synergistic effects in property selection and tuning. Such hybrid materials, generally termed ionogels, are thus an emerging topic in hybrid materials research. The current article addresses some of the recent developments and focuses on the question why silica is currently the dominating matrix used for (inorganic) ionogel fabrication. In comparison to silica, matrix materials such as layered simple hydroxides, layered double hydroxides, clay-type substances, magnetic or catalytically active solids, and many other compounds could be much more interesting because they themselves may carry useful functionalities, which could also be exploited for multifunctional hybrid materials synthesis. The current article combines experimental results with some arguments as to how new, advanced functional hybrid materials can be generated and which obstacles will need to be overcome to successfully achieve the synthesis of a desired target material.

12.
Dalton Trans ; 39(44): 10577-80, 2010 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-20922249

RESUMEN

Synthesis of new heterometallic layered magnets with controlled chirality have been achieved by insertion of chiral and non-chiral salen-type Ni(II) complexes into copper and cobalt layered simple hydroxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...