Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys Rep (N Y) ; 3(4): 100134, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38026684

RESUMEN

The fluorescent benzothiazole dye thioflavin T (ThT) is widely used as a marker for protein aggregates, most commonly in the context of neurodegenerative disease research and diagnosis. Recently, this same dye was shown to indicate membrane potential in bacteria due to its cationic nature. This finding prompted a question whether ThT fluorescence is linked to the membrane potential in mammalian cells, which would be important for appropriate utilization of ThT in research and diagnosis. Here, we show that ThT localizes into the mitochondria of HeLa cells in a membrane-potential-dependent manner. Specifically, ThT colocalized in cells with the mitochondrial membrane potential indicator tetramethylrhodamine methyl ester (TMRM) and gave similar temporal responses as TMRM to treatment with a protonophore, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP). Additionally, we found that presence of ThT together with exposure to blue light (λ = 405 nm), but neither factor alone, caused depolarization of mitochondrial membrane potential. This additive effect of the concentration and blue light was recapitulated by a mathematical model implementing the potential-dependent distribution of ThT and its effect on mitochondrial membrane potential through photosensitization. These results show that ThT can act as a mitochondrial membrane potential indicator in mammalian cells, when used at low concentrations and with low blue light exposure. However, it causes dissipation of the mitochondrial membrane potential depending additively on its concentrations and blue light exposure. This conclusion motivates a re-evaluation of ThT's use at micromolar range in live-cell analyses and indicates that this dye can enable future studies on the potential connections between mitochondrial membrane potential dynamics and protein aggregation.

2.
Elife ; 122023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36799616

RESUMEN

Cycling of co-substrates, whereby a metabolite is converted among alternate forms via different reactions, is ubiquitous in metabolism. Several cycled co-substrates are well known as energy and electron carriers (e.g. ATP and NAD(P)H), but there are also other metabolites that act as cycled co-substrates in different parts of central metabolism. Here, we develop a mathematical framework to analyse the effect of co-substrate cycling on metabolic flux. In the cases of a single reaction and linear pathways, we find that co-substrate cycling imposes an additional flux limit on a reaction, distinct to the limit imposed by the kinetics of the primary enzyme catalysing that reaction. Using analytical methods, we show that this additional limit is a function of the total pool size and turnover rate of the cycled co-substrate. Expanding from this insight and using simulations, we show that regulation of these two parameters can allow regulation of flux dynamics in branched and coupled pathways. To support these theoretical insights, we analysed existing flux measurements and enzyme levels from the central carbon metabolism and identified several reactions that could be limited by the dynamics of co-substrate cycling. We discuss how the limitations imposed by co-substrate cycling provide experimentally testable hypotheses on specific metabolic phenotypes. We conclude that measuring and controlling co-substrate dynamics is crucial for understanding and engineering metabolic fluxes in cells.


Metabolism powers individual cells and ultimately the body. It comprises a sequence of chemical reactions that cells use to break down substances and generate energy. These reactions are catalyzed by enzymes, which are proteins that speed up the rate of the reaction. Many reactions also involve co-substrates, which are themselves transformed by individual reactions but are eventually converted back into their original form in a series of steps. This process is known as co-substrate cycling. Scientists have long been interested in understanding what controls the rate at which metabolic reactions and metabolic pathways convert a substance into a final product. This is a difficult subject to study because of the complexity of the metabolic pathways, with their branched, linear or coupled structures. In the past, researchers have looked at the influence of enzymes on the rate of a metabolic pathway, but less has been known about the effect of co-substrate cycling. To find out more, West, Delattre et al. developed a series of mathematical models to describe different types of metabolic pathways in terms of the number of metabolites that enter and leave it, including the influence of co-substrates. They found that co-substrate cycling, when involved in a metabolic reaction, limits the speed with which the reaction happens. This is distinct from the limit that enzymes impose on the speed of the reaction. It depends on the total amount of co-substrates in the cell: changing the number of co-substrates in the cell influences the speed at which the metabolic reaction takes place. This study has increased our understanding of how metabolic pathways work, and what controls the speed at which reactions take place. It opens up a new potential method for explaining how cells control metabolic reaction rates and how metabolic substrates can be directed across different pathways. This research is likely to inspire future research into the influence of co-substrates in different cell types and conditions.


Asunto(s)
Carbono , Modelos Biológicos , Cinética
3.
Life Sci Alliance ; 4(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33234678

RESUMEN

Viruses rely on their host for reproduction. Here, we made use of genomic and structural information to create a biomass function capturing the amino and nucleic acid requirements of SARS-CoV-2. Incorporating this biomass function into a stoichiometric metabolic model of the human lung cell and applying metabolic flux balance analysis, we identified host-based metabolic perturbations inhibiting SARS-CoV-2 reproduction. Our results highlight reactions in the central metabolism, as well as amino acid and nucleotide biosynthesis pathways. By incorporating host cellular maintenance into the model based on available protein expression data from human lung cells, we find that only few of these metabolic perturbations are able to selectively inhibit virus reproduction. Some of the catalysing enzymes of such reactions have demonstrated interactions with existing drugs, which can be used for experimental testing of the presented predictions using gene knockouts and RNA interference techniques. In summary, the developed computational approach offers a platform for rapid, experimentally testable generation of drug predictions against existing and emerging viruses based on their biomass requirements.


Asunto(s)
Interacciones Huésped-Patógeno , Pulmón , SARS-CoV-2 , Replicación Viral , Antivirales/farmacología , Biomasa , COVID-19/prevención & control , COVID-19/virología , Células Cultivadas , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Glucólisis/fisiología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/fisiología , Humanos , Pulmón/citología , Pulmón/metabolismo , Análisis de Flujos Metabólicos , Modelos Biológicos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Biología de Sistemas , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología
4.
J R Soc Interface ; 17(166): 20200053, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32370691

RESUMEN

Microbial communities are complex dynamical systems harbouring many species interacting together to implement higher-level functions. Among these higher-level functions, conversion of organic matter into simpler building blocks by microbial communities underpins biogeochemical cycles and animal and plant nutrition, and is exploited in biotechnology. A prerequisite to predicting the dynamics and stability of community-mediated metabolic conversions is the development and calibration of appropriate mathematical models. Here, we present a generic, extendable thermodynamic model for community dynamics and calibrate a key parameter of this thermodynamic model, the minimum energy requirement associated with growth-supporting metabolic pathways, using experimental population dynamics data from synthetic communities composed of a sulfate reducer and two methanogens. Our findings show that accounting for thermodynamics is necessary in capturing the experimental population dynamics of these synthetic communities that feature relevant species using low energy growth pathways. Furthermore, they provide the first estimates for minimum energy requirements of methanogenesis (in the range of -30 kJ mol-1) and elaborate on previous estimates of lactate fermentation by sulfate reducers (in the range of -30 to -17 kJ mol-1 depending on the culture conditions). The open-source nature of the developed model and demonstration of its use for estimating a key thermodynamic parameter should facilitate further thermodynamic modelling of microbial communities.


Asunto(s)
Microbiota , Redes y Vías Metabólicas , Oxidación-Reducción , Sulfatos , Termodinámica
5.
ISME J ; 13(2): 263-276, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30194430

RESUMEN

Microbial communities are key engines that drive earth's biogeochemical cycles. However, existing ecosystem models have only limited ability to predict microbial dynamics and require the calibration of multiple population-specific empirical equations. In contrast, we build on a new kinetic "Microbial Transition State" (MTS) theory of growth derived from first principles. We show how the theory coupled to simple mass and energy balance calculations provides a framework with intrinsically important qualitative properties to model microbial community dynamics. We first show how the theory can simultaneously account for the influence of all the resources needed for growth (electron donor, acceptor, and nutrients) while still producing consistent dynamics that fulfill the Liebig rule of a single limiting substrate. We also show consistent patterns of energy-dependent microbial successions in mixed culture without the need for calibration of population-specific parameters. We then show how this approach can be used to model a simplified activated sludge community. To this end, we compare MTS-derived dynamics with those of a widely used activated sludge model and show that similar growth yields and overall dynamics can be obtained using two parameters instead of twelve. This new kinetic theory of growth grounded by a set of generic physical principles parsimoniously gives rise to consistent microbial population and community dynamics, thereby paving the way for the development of a new class of more predictive microbial ecosystem models.


Asunto(s)
Aguas del Alcantarillado/microbiología , Ecosistema , Cinética , Modelos Biológicos
6.
Virology ; 496: 42-50, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27254594

RESUMEN

Distant homology search tools are of great help to predict viral protein functions. However, due to the lack of profile databases dedicated to viruses, they can lack sensitivity. We constructed HMM profiles for more than 80,000 proteins from both phages and archaeal viruses, and performed all pairwise comparisons with HHsearch program. The whole resulting database can be explored through a user-friendly "Phagonaute" interface to help predict functions. Results are displayed together with their genetic context, to strengthen inferences based on remote homology. Beyond function prediction, this tool permits detections of co-occurrences, often indicative of proteins completing a task together, and observation of conserved patterns across large evolutionary distances. As a test, Herpes simplex virus I was added to Phagonaute, and 25% of its proteome matched to bacterial or archaeal viral protein counterparts. Phagonaute should therefore help virologists in their quest for protein functions and evolutionary relationships.


Asunto(s)
Bacteriófagos/genética , Biología Computacional/métodos , Programas Informáticos , Sintenía , Proteínas Virales/genética , Navegador Web , Bacteriófagos/metabolismo , Genoma Viral , Genómica/métodos , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...