Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174652, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992377

RESUMEN

The ability of soil to sequester carbon and reduce atmospheric CO2 concentrations is limited and depends on the soil minerals and their interaction with the microbiota. Microbial activities are closely associated with the types and amounts of soil organic matter (SOM) and clay minerals that have functional groups that interact with energy in Vis NIR-SWIR and Mid-IR wavelengths. The main objective of this research was to determine, based on these spectral ranges, the relation between mineralogical and organic compounds, as their sequestration and specialization in soils from Brazil. It was possible to map microbiological activity by spectral transfer functions and digital soil mapping reaching R2 from 0.77 to 0.85. Multiple regression equations were constructed to quantify enzymatic activity, microbial biomass carbon (MBC), particulate organic matter (POM), and resistant forms of carbon, and SOM associated with the mineral fraction (MAOM). All these properties were detected by specific bands obtained with the recursive feature elimination (RFE) algorithm, reaching correlations from 0.64 to 0.98 in specific ranges. The prediction model of the carbon sequestration potential was adjusted with microbiological and mineralogical variables from Vis-NIR-SWIR and the Mid-IR spectral range. A SARAR double autoregressive model was adjusted with r 0.61 and to a spatial error model (SEM) with r 0.7. The explanatory variables were associated with kaolinite, hematite, goethite, gibbsite, and the abundance of fungi, actinomycetes, vesico-arbuscular mycorrhizal fungi, enzymatic activity of beta-glucosidase, urease and phosphatase, and POM. Among the microbiological variables, the general abundance of fungi was the most important, in contrast to enzymatic activity that was the least important. The interaction between the different maps constructed and historical land use allowed the identification of areas that contribute to sequestering new carbon and could be the key to climate change mitigation strategies.


Asunto(s)
Secuestro de Carbono , Microbiología del Suelo , Suelo , Suelo/química , Minerales/análisis , Brasil , Carbono/análisis , Monitoreo del Ambiente/métodos
2.
Plants (Basel) ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38337928

RESUMEN

Heat stress is an abiotic factor that affects the photosynthetic parameters of plants. In this study, we examined the photosynthetic mechanisms underlying the rapid response of tobacco plants to heat stress in a controlled environment. To evaluate transient heat stress conditions, changes in photochemical, carboxylative, and fluorescence efficiencies were measured using an infrared gas analyser (IRGA Licor 6800) coupled with chlorophyll a fluorescence measurements. Our findings indicated that significant disruptions in the photosynthetic machinery occurred at 45 °C for 6 h following transient heat treatment, as explained by 76.2% in the principal component analysis. The photosynthetic mechanism analysis revealed that the dark respiration rate (Rd and Rd*CO2) increased, indicating a reduced potential for carbon fixation during plant growth and development. When the light compensation point (LCP) increased as the light saturation point (LSP) decreased, this indicated potential damage to the photosystem membrane of the thylakoids. Other photosynthetic parameters, such as AMAX, VCMAX, JMAX, and ΦCO2, also decreased, compromising both photochemical and carboxylative efficiencies in the Calvin-Benson cycle. The energy dissipation mechanism, as indicated by the NPQ, qN, and thermal values, suggested that a photoprotective strategy may have been employed. However, the observed transitory damage was a result of disruption of the electron transport rate (ETR) between the PSII and PSI photosystems, which was initially caused by high temperatures. Our study highlights the impact of rapid temperature changes on plant physiology and the potential acclimatisation mechanisms under rapid heat stress. Future research should focus on exploring the adaptive mechanisms involved in distinguishing mutants to improve crop resilience against environmental stressors.

3.
Sci Rep ; 13(1): 14103, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644055

RESUMEN

Food production is extremely dependent on the soil. Brazil plays an important role in the global food production chain. Although only 30% of the total Brazilian agricultural areas are used for crop and livestock, the full soil production potential needs to be evaluated due to the environmental and legal impossibility to expand agriculture to new areas. A novel approach to assess the productive potential of soils, called "SoilPP" and based on soil analysis (0-100 cm) - which express its pedological information - and machine learning is presented. Historical yields of sugarcane and soybeans were analyzed, allowing to identify where it is still possible to improve crop yields. The soybean yields were below the estimated SoilPP in 46% of Brazilian counties and could be improved by proper management practices. For sugarcane, 38% of areas can be improved. This technique allowed us to understand and map the food yield situation over large areas, which can support farmers, consultants, industries, policymakers, and world food security planning.

4.
Plants (Basel) ; 12(13)2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37447089

RESUMEN

Hyperspectral technology offers significant potential for non-invasive monitoring and prediction of morphological parameters in plants. In this study, UV-VIS-NIR-SWIR reflectance hyperspectral data were collected from Nicotiana tabacum L. plants using a spectroradiometer. These plants were grown under different light and gibberellic acid (GA3) concentrations. Through spectroscopy and multivariate analyses, key growth parameters, such as height, leaf area, energy yield, and biomass, were effectively evaluated based on the interaction of light with leaf structures. The shortwave infrared (SWIR) bands, specifically SWIR1 and SWIR2, showed the strongest correlations with these growth parameters. When classifying tobacco plants grown under different GA3 concentrations in greenhouses, artificial intelligence (AI) and machine learning (ML) algorithms were employed, achieving an average accuracy of over 99.1% using neural network (NN) and gradient boosting (GB) algorithms. Among the 34 tested vegetation indices, the photochemical reflectance index (PRI) demonstrated the strongest correlations with all evaluated plant phenotypes. Partial least squares regression (PLSR) models effectively predicted morphological attributes, with R2CV values ranging from 0.81 to 0.87 and RPDP values exceeding 2.09 for all parameters. Based on Pearson's coefficient XYZ interpolations and HVI algorithms, the NIR-SWIR band combination proved the most effective for predicting height and leaf area, while VIS-NIR was optimal for optimal energy yield, and VIS-VIS was best for predicting biomass. To further corroborate these findings, the SWIR bands for certain morphological characteristic wavelengths selected with s-PLS were most significant for SWIR1 and SWIR2, while i-PLS showed a more uniform distribution in VIS-NIR-SWIR bands. Therefore, SWIR hyperspectral bands provide valuable insights into developing alternative bands for remote sensing measurements to estimate plant morphological parameters. These findings underscore the potential of remote sensing technology for rapid, accurate, and non-invasive monitoring within stationary high-throughput phenotyping systems in greenhouses. These insights align with advancements in digital and precision technology, indicating a promising future for research and innovation in this field.

5.
Sci Rep ; 13(1): 10897, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407589

RESUMEN

The pressure for food production has expanded agriculture frontiers worldwide, posing a threat to water resources. For instance, placing crop systems over hydromorphic soils (HS), have a direct impact on groundwater and influence the recharge of riverine ecosystems. Environmental regulations improved over the past decades, but it is difficult to detect and protect these soils. To overcome this issue, we applied a temporal remote sensing strategy to generate a synthetic soil image (SYSI) associated with random forest (RF) to map HS in an 735,953.8 km2 area in Brazil. HS presented different spectral patterns from other soils, allowing the detection by satellite sensors. Slope and SYSI contributed the most for the prediction model using RF with cross validation (accuracy of 0.92). The assessments showed that 14.5% of the study area represented HS, mostly located inside agricultural areas. Soybean and pasture areas had up to 14.9% while sugar cane had just 3%. Here we present an advanced remote sensing technique that may improve the identification of HS under agriculture and assist public policies for their conservation.

6.
Biology (Basel) ; 12(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37237516

RESUMEN

The adjustments that occur during photosynthesis are correlated with morphological, biochemical, and photochemical changes during leaf development. Therefore, monitoring leaves, especially when pigment accumulation occurs, is crucial for monitoring organelles, cells, tissue, and whole-plant levels. However, accurately measuring these changes can be challenging. Thus, this study tests three hypotheses, whereby reflectance hyperspectroscopy and chlorophyll a fluorescence kinetics analyses can improve our understanding of the photosynthetic process in Codiaeum variegatum (L.) A. Juss, a plant with variegated leaves and different pigments. The analyses include morphological and pigment profiling, hyperspectral data, chlorophyll a fluorescence curves, and multivariate analyses using 23 JIP test parameters and 34 different vegetation indexes. The results show that photochemical reflectance index (PRI) is a useful vegetation index (VI) for monitoring biochemical and photochemical changes in leaves, as it strongly correlates with chlorophyll and nonphotochemical dissipation (Kn) parameters in chloroplasts. In addition, some vegetation indexes, such as the pigment-specific simple ratio (PSSRc), anthocyanin reflectance index (ARI1), ratio analysis of reflectance spectra (RARS), and structurally insensitive pigment index (SIPI), are highly correlated with morphological parameters and pigment levels, while PRI, moisture stress index (MSI), normalized difference photosynthetic (PVR), fluorescence ratio (FR), and normalized difference vegetation index (NDVI) are associated with photochemical components of photosynthesis. Combined with the JIP test analysis, our results showed that decreased damage to energy transfer in the electron transport chain is correlated with the accumulation of carotenoids, anthocyanins, flavonoids, and phenolic compounds in the leaves. Phenomenological energy flux modelling shows the highest changes in the photosynthetic apparatus based on PRI and SIPI when analyzed with Pearson's correlation, the hyperspectral vegetation index (HVI) algorithm, and the partial least squares (PLS) to select the most responsive wavelengths. These findings are significant for monitoring nonuniform leaves, particularly when leaves display high variation in pigment profiling in variegated and colorful leaves. This is the first study on the rapid and precise detection of morphological, biochemical, and photochemical changes combined with vegetation indexes for different optical spectroscopy techniques.

7.
Plants (Basel) ; 12(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36987021

RESUMEN

In this study, we investigated the use of artificial intelligence algorithms (AIAs) in combination with VIS-NIR-SWIR hyperspectroscopy for the classification of eleven lettuce plant varieties. For this purpose, a spectroradiometer was utilized to collect hyperspectral data in the VIS-NIR-SWIR range, and 17 AIAs were applied to classify lettuce plants. The results showed that the highest accuracy and precision were achieved using the full hyperspectral curves or the specific spectral ranges of 400-700 nm, 700-1300 nm, and 1300-2400 nm. Four models, AdB, CN2, G-Boo, and NN, demonstrated exceptional R2 and ROC values, exceeding 0.99, when compared between all models and confirming the hypothesis and highlighting the potential of AIAs and hyperspectral fingerprints for efficient, precise classification and pigment phenotyping in agriculture. The findings of this study have important implications for the development of efficient methods for phenotyping and classification in agriculture and the potential of AIAs in combination with hyperspectral technology. To advance our understanding of the capabilities of hyperspectroscopy and AIs in precision agriculture and contribute to the development of more effective and sustainable agriculture practices, further research is needed to explore the full potential of these technologies in different crop species and environments.

8.
Environ Pollut ; 292(Pt B): 118397, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34688724

RESUMEN

Soil contamination by potentially toxic elements (PTEs) is one of the greatest threats to environmental degradation. Knowing where PTEs accumulated in soil can mitigate their adverse effects on plants, animals, and human health. We evaluated the potential of using long-term remote sensing images that reveal the bare soils, to detect and map PTEs in agricultural fields. In this study, 360 soil samples were collected at the superficial layer (0-20 cm) in a 2574 km2 agricultural area located in São Paulo State, Brazil. We tested the Soil Synthetic Image (SYSI) using Landsat TM/ETM/ETM+, Landsat OLI, and Sentinel 2 images. The three products have different spectral, temporal, and spatial resolutions. The time series multispectral images were used to reveal areas with bare soil and their spectra were used as predictors of soil chromium, iron, nickel, and zinc contents. We observed a strong linear relationship (-0.26 > r > -0.62) between the selected PTEs and the near infrared (NIR) and shortwave infrared (SWIR) bands of Sentinel (ensemble of 4 years of data), Landsat TM (35 years data), and Landsat OLI (4 years data). The clearest discrimination of soil PTEs was obtained from SYSI using a long term Landsat 5 collection over 35 years. Satellite data could efficiently detect the contents of PTEs in soils due to their relation with soil attributes and parent materials. Therefore, distinct satellite sensors could map the PTEs on tropics and assist in understanding their spatial dynamics and environmental effects.


Asunto(s)
Contaminantes del Suelo , Suelo , Agricultura , Brasil , Monitoreo del Ambiente , Humanos , Tecnología de Sensores Remotos , Contaminantes del Suelo/análisis
9.
Insects ; 12(1)2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33435312

RESUMEN

Although monitoring insect pest populations in the fields is essential in crop management, it is still a laborious and sometimes ineffective process. Imprecise decision-making in an integrated pest management program may lead to ineffective control in infested areas or the excessive use of insecticides. In addition, high infestation levels may diminish the photosynthetic activity of soybean, reducing their development and yield. Therefore, we proposed that levels of infested soybean areas could be identified and classified in a field using hyperspectral proximal sensing. Thus, the goals of this study were to investigate and discriminate the reflectance characteristics of soybean non-infested and infested with Bemisia tabaci using hyperspectral sensing data. Therefore, cages were placed over soybean plants in a commercial field and artificial whitefly infestations were created. Later, samples of infested and non-infested soybean leaves were collected and transported to the laboratory to obtain the hyperspectral curves. The results allowed us to discriminate the different levels of infestation and to separate healthy from whitefly infested soybean leaves based on their reflectance. In conclusion, these results show that hyperspectral sensing can potentially be used to monitor whitefly populations in soybean fields.

10.
J Environ Manage ; 277: 111316, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-32980636

RESUMEN

Studies on soil degradation are essential for environmental preservation. Since almost 30% of the global soils are degraded, it is important to study and map them for improving their management and use. We aimed to obtain a Soil Degradation Index (SDI) based on multi-temporal satellite images associated with climate variables, land use, terrain and soil attributes. The study was conducted in a 2598 km2 area in São Paulo State, Brazil, where 1562 soil samples (0-20 cm) were collected and analyzed by conventional methods. Spatial predictions of soil attributes such as clay, cation exchange capacity (CEC) and soil organic matter (OM) were performed using machine learning algorithms. A collection of 35-year Landsat images was used to obtain a multi-temporal bare soil image, whose spectral bands were used as soil attributes predictors. The maps of clay, CEC, climate variables, terrain attributes and land use were overlaid and the K-means clustering algorithm was applied to obtain five groups, which represented levels of soil degradation (classes from 1 to 5 representing very low to very high soil degradation). The SDI was validated using the predicted map of OM. The highest degradation level obtained in 15% of the area had the lowest OM content. Levels 1 and 4 of SDI were the most representative covering 24% and 23% of the area, respectively. Therefore, satellite images combined with environmental information significantly contributed to the SDI development, which supports decision-making on land use planning and management.


Asunto(s)
Tecnología de Sensores Remotos , Suelo , Brasil , Clima , Ambiente , Monitoreo del Ambiente
11.
Sci Rep ; 10(1): 4461, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32157136

RESUMEN

The Earth's surface dynamics provide essential information for guiding environmental and agricultural policies. Uncovered and unprotected surfaces experience several undesirable effects, which can affect soil ecosystem functions. We developed a technique to identify global bare surface areas and their dynamics based on multitemporal remote sensing images to aid the spatiotemporal evaluation of anthropic and natural phenomena. The bare Earth's surface and its changes were recognized by Landsat image processing over a time range of 30 years using the Google Earth Engine platform. Two additional products were obtained with a similar technique: a) Earth's bare surface frequency, which represents where and how many times a single pixel was detected as bare surface, based on Landsat series, and b) Earth's bare soil tendency, which represents the tendency of bare surface to increase or decrease. This technique enabled the retrieval of bare surfaces on 32% of Earth's total land area and on 95% of land when considering only agricultural areas. From a multitemporal perspective, the technique found a 2.8% increase in bare surfaces during the period on a global scale. However, the rate of soil exposure decreased by ~4.8% in the same period. The increase in bare surfaces shows that agricultural areas are increasing worldwide. The decreasing rate of soil exposure indicates that, unlike popular opinion, more soils have been covered due to the adoption of conservation agriculture practices, which may reduce soil degradation.

12.
Data Brief ; 25: 104070, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31431909

RESUMEN

Geospatial soil information is critical for agricultural policy formulation and decision making, land-use suitability analysis, sustainable soil management, environmental assessment, and other research topics that are of vital importance to agriculture and economy. Proximal and Remote sensing technologies enables us to collect, process, and analyze spectral data and to retrieve, synthesize, visualize valuable geospatial information for multidisciplinary uses. We obtained the soil class map provided in this article by processing and analyzing proximal and remote sensed data from soil samples collected in toposequences based on pedomorphogeological relashionships. The soils were classified up to the second categorical level (suborder) of the Brazilian Soil Classification System (SiBCS), as well as in the World Reference Base (WRB) and United States Soil Taxonomy (ST) systems. The raster map has 30 m resolution and its accuracy is 73% (Kappa coefficient of 0.73). The soil legend represents a soil class followed by its topsoil color.

13.
Sci. agric ; 73(2): 159-168, Mar.-Apr. 2016. tab, ilus, graf
Artículo en Inglés | VETINDEX | ID: biblio-1497553

RESUMEN

When the harvesting of sugarcane involves a mechanized process, plant residues remain on the soil surface, which makes proximal and remote sensing difficult to monitor. This study aimed to evaluate, under laboratory conditions, differences in the soil spectral behavior of surface layers Quartzipsamment and Hapludox soil classes due to increasing levels of sugarcanes dry (DL) and green (GL) leaf cover on the soil. Soil cover was quantified by supervised classification of the digital images (photography) taken of the treatments. The spectral reflectance of the samples was obtained using the FieldSpec Pro (350 to 2500 nm). TM-Landsat bands were simulated and the Normalized Difference Vegetation Index (NDVI) and soil line were also determined. Soil cover ranged from 0 to 89 % for DL and 0 to 80 % for GL. Dry leaf covering affected the features of the following soil constituents: iron oxides (480, 530 and 900 nm) and kaolinite (2200 nm). Water absorption (1400 and 1900 nm) and chlorophyll (670 nm) were determinant in differentiating between bare soil and GL covering. Bands 3 and 4 and NDVI showed pronounced variations as regards differences in soil cover percentage for both DL and GL. The soil line allowed for discrimination of the bare soil from the covered soil (DL and GL). High resolution sensors from about 50 % of the DL or GL covering are expected to reveal differences in soil spectral behavior. Above this coverage percentage, soil assessment by remote sensing is impaired.


Asunto(s)
Análisis Espectral , Análisis del Suelo , Saccharum
14.
Sci. agric. ; 73(2): 159-168, Mar.-Apr. 2016. tab, ilus, graf
Artículo en Inglés | VETINDEX | ID: vti-30569

RESUMEN

When the harvesting of sugarcane involves a mechanized process, plant residues remain on the soil surface, which makes proximal and remote sensing difficult to monitor. This study aimed to evaluate, under laboratory conditions, differences in the soil spectral behavior of surface layers Quartzipsamment and Hapludox soil classes due to increasing levels of sugarcanes dry (DL) and green (GL) leaf cover on the soil. Soil cover was quantified by supervised classification of the digital images (photography) taken of the treatments. The spectral reflectance of the samples was obtained using the FieldSpec Pro (350 to 2500 nm). TM-Landsat bands were simulated and the Normalized Difference Vegetation Index (NDVI) and soil line were also determined. Soil cover ranged from 0 to 89 % for DL and 0 to 80 % for GL. Dry leaf covering affected the features of the following soil constituents: iron oxides (480, 530 and 900 nm) and kaolinite (2200 nm). Water absorption (1400 and 1900 nm) and chlorophyll (670 nm) were determinant in differentiating between bare soil and GL covering. Bands 3 and 4 and NDVI showed pronounced variations as regards differences in soil cover percentage for both DL and GL. The soil line allowed for discrimination of the bare soil from the covered soil (DL and GL). High resolution sensors from about 50 % of the DL or GL covering are expected to reveal differences in soil spectral behavior. Above this coverage percentage, soil assessment by remote sensing is impaired.(AU)


Asunto(s)
Análisis del Suelo , Saccharum , Análisis Espectral
15.
Sci. agric ; 73(3): 266-273, 2016. ilus, tab, map, graf
Artículo en Inglés | VETINDEX | ID: biblio-1497562

RESUMEN

Digital soil mapping is an alternative for the recognition of soil classes in areas where pedological surveys are not available. The main aim of this study was to obtain a digital soil map using artificial neural networks (ANN) and environmental variables that express soil-landscape relationships. This study was carried out in an area of 11,072 ha located in the Barra Bonita municipality, state of São Paulo, Brazil. A soil survey was obtained from a reference area of approximately 500 ha located in the center of the area studied. With the mapping units identified together with the environmental variables elevation, slope, slope plan, slope profile, convergence index, geology and geomorphic surfaces, a supervised classification by ANN was implemented. The neural network simulator used was the Java NNS with the learning algorithm "back propagation." Reference points were collected for evaluating the performance of the digital map produced. The occurrence of soils in the landscape obtained in the reference area was observed in the following digital classification: medium-textured soils at the highest positions of the landscape, originating from sandstone, and clayey loam soils in the end thirds of the hillsides due to the greater presence of basalt. The variables elevation and slope were the most important factors for discriminating soil class through the ANN. An accuracy level of 82% between the reference points and the digital classification was observed. The methodology proposed allowed for a preliminary soil classification of an area not previously mapped using mapping units obtained in a reference area.


Asunto(s)
Adaptación a Desastres , Encuesta Socioeconómica , Agricultores , Cambio Climático , Percepción , Agricultura , Análisis de Regresión , Factores Socioeconómicos , Procesos Climáticos
16.
Sci. agric. ; 73(3): 266-273, 2016. ilus, tab, mapas, graf
Artículo en Inglés | VETINDEX | ID: vti-15762

RESUMEN

Digital soil mapping is an alternative for the recognition of soil classes in areas where pedological surveys are not available. The main aim of this study was to obtain a digital soil map using artificial neural networks (ANN) and environmental variables that express soil-landscape relationships. This study was carried out in an area of 11,072 ha located in the Barra Bonita municipality, state of São Paulo, Brazil. A soil survey was obtained from a reference area of approximately 500 ha located in the center of the area studied. With the mapping units identified together with the environmental variables elevation, slope, slope plan, slope profile, convergence index, geology and geomorphic surfaces, a supervised classification by ANN was implemented. The neural network simulator used was the Java NNS with the learning algorithm "back propagation." Reference points were collected for evaluating the performance of the digital map produced. The occurrence of soils in the landscape obtained in the reference area was observed in the following digital classification: medium-textured soils at the highest positions of the landscape, originating from sandstone, and clayey loam soils in the end thirds of the hillsides due to the greater presence of basalt. The variables elevation and slope were the most important factors for discriminating soil class through the ANN. An accuracy level of 82% between the reference points and the digital classification was observed. The methodology proposed allowed for a preliminary soil classification of an area not previously mapped using mapping units obtained in a reference area.(AU)


Asunto(s)
Cambio Climático , Agricultores , Percepción , Encuesta Socioeconómica , Adaptación a Desastres , Agricultura , Procesos Climáticos , Factores Socioeconómicos , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA