Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 60(45): 5808-5811, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38712454

RESUMEN

Metal-organic frameworks (MOFs) have shown promise for adsorptive separations of metal ions. Herein, MOFs based on highly stable Zr(IV) building units were systematically functionalized with targeted metal binding groups. Through competitive adsorption studies, it was shown that the selectivity for different metal ions was directly tunable through functional group chemistry.

2.
Nat Commun ; 14(1): 981, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813785

RESUMEN

Lifetime-encoded materials are particularly attractive as optical tags, however examples are rare and hindered in practical application by complex interrogation methods. Here, we demonstrate a design strategy towards multiplexed, lifetime-encoded tags via engineering intermetallic energy transfer in a family of heterometallic rare-earth metal-organic frameworks (MOFs). The MOFs are derived from a combination of a high-energy donor (Eu), a low-energy acceptor (Yb) and an optically inactive ion (Gd) with the 1,2,4,5 tetrakis(4-carboxyphenyl) benzene (TCPB) organic linker. Precise manipulation of the luminescence decay dynamics over a wide microsecond regime is achieved via control over metal distribution in these systems. Demonstration of this platform's relevance as a tag is attained via a dynamic double encoding method that uses the braille alphabet, and by incorporation into photocurable inks patterned on glass and interrogated via digital high-speed imaging. This study reveals true orthogonality in encoding using independently variable lifetime and composition, and highlights the utility of this design strategy, combining facile synthesis and interrogation with complex optical properties.

3.
ACS Appl Mater Interfaces ; 14(2): 3038-3047, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34995439

RESUMEN

Optical anticounterfeiting tags utilize the photoluminescent properties of materials to encode unique patterns, enabling identification and validation of important items and assets. These tags must combine optical complexity with ease of production and authentication to both prevent counterfeiting and to remain practical for widespread use. Metal-organic frameworks (MOFs) based on polynuclear, rare earth clusters are ideal materials platforms for this purpose, combining fine control over structure and composition, with tunable, complex energy transfer mechanisms via both linker and metal components. Here we report the design and synthesis of a set of heterometallic MOFs based on combinations of Eu, Nd, and Yb with the tetratopic linker 1,3,6,8-tetrakis(4-carboxyphenyl)pyrene. The energetics of this linker facilitate the intentional concealment of the visible emissions from Eu while retaining the infrared emissions of Nd and Yb, creating an optical tag with multiple covert elements. Unique to the materials system reported herein, we document the occurrence of a previously not observed 11-metal cluster correlated with the presence of Yb in the MOFs, coexisting with a commonly encountered 9-metal cluster. We demonstrate the utility of these materials as intricate optical tags with both rapid and in-depth screening techniques, utilizing orthogonal identifiers across composition, emission spectra, and emission decay dynamics. This work highlights the important effect of linker selection in controlling the resulting photoluminescent properties in MOFs and opens an avenue for the targeted design of highly complex, multifunctional optical tags.

4.
ACS Appl Mater Interfaces ; 13(23): 27295-27304, 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34085832

RESUMEN

Owing to their facile synthesis, tailorable porosity, diverse compositions, and low toxicity, zeolitic imidazolate framework (ZIF) nanoparticles (NPs) have emerged as attractive platforms for a variety of biologically relevant applications. To date, a small subset of ZIFs representing only two topologies and very few linker chemistries have been studied in this realm. We seek to expand the bio-design space for ZIF NPs through the targeted synthesis of a hierarchically complex ZIF based on two types of cages, ZIF-20, with lta topology. This study demonstrates the rapid synthesis and size tunability of ZIF-20 particles across the micro and nanoregimes via microwave heating and the use of a modulating agent. To evaluate the utility of ZIF particles for biological applications, we examine their stability in biologically relevant media and demonstrate biocompatibility with A549 human epithelial cells. Further, the ability to encapsulate and release methylene blue, a therapeutic and bioimaging agent, is validated. Importantly, ZIF-20 NPs display a unique behavior relative to previously studied ZIFs based on their specific structural and chemical features. This finding highlights the need to expand the design space across the broader ZIFs family, to exploit a wider range of relevant properties for biological applications and beyond.


Asunto(s)
Imidazoles/química , Neoplasias Pulmonares/metabolismo , Estructuras Metalorgánicas/administración & dosificación , Azul de Metileno/metabolismo , Nanopartículas/administración & dosificación , Zeolitas/química , Células A549 , Supervivencia Celular , Humanos , Neoplasias Pulmonares/patología , Estructuras Metalorgánicas/química , Nanopartículas/química
5.
Angew Chem Int Ed Engl ; 60(3): 1203-1211, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33137241

RESUMEN

Optical tags provide a way to quickly and unambiguously identify valuable assets. Current tag fluorophore options lack the tunability to allow combined methods of encoding in a single material. Herein we report a design strategy to encode multilayer complexity in a family of heterometallic rare-earth metal-organic frameworks based on highly connected nonanuclear clusters. To impart both intricacy and security, a synergistic approach was implemented resulting in both overt (visible) and covert (near-infrared, NIR) properties, with concomitant multi-emissive spectra and tunable luminescence lifetimes. Tag authentication is validated with a variety of orthogonal detection methodologies. Importantly, the effect induced by subtle compositional changes on intermetallic energy transfer, and thus on the resulting photophysical properties, is demonstrated. This strategy can be widely implemented to create a large library of highly complex, difficult-to-counterfeit optical tags.

6.
ChemSusChem ; 8(2): 275-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25421020

RESUMEN

The effects of different alkaline pretreatments on cellulose structural features and accessibility are compared and correlated with the enzymatic hydrolysis of Populus. The pretreatments are shown to modify polysaccharides and lignin content to enhance the accessibility for cellulase enzymes. The highest increase in the cellulose accessibility was observed in dilute sodium hydroxide, followed by methods using ammonia soaking and lime (Ca(OH)2 ). The biggest increase of cellulose accessibility occurs during the first 10 min of pretreatment, with further increases at a slower rate as severity increases. Low temperature ammonia soaking at longer residence times dissolved a major portion of hemicellulose and exhibited higher cellulose accessibility than high temperature soaking. Moreover, the most significant reduction of degree of polymerization (DP) occurred for dilute sodium hydroxide (NaOH) and ammonia pretreated Populus samples. The study thus identifies important cellulose structural features and relevant parameters related to biomass recalcitrance.


Asunto(s)
Celulosa/química , Adsorción , Amoníaco/química , Compuestos de Calcio/química , Colorantes/química , Glucosa/química , Concentración de Iones de Hidrógeno , Hidrólisis , Óxidos/química , Populus/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA