Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Front Psychiatry ; 15: 1403852, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38932939

RESUMEN

Background: Major depressive disorder (MDD) pathogenesis may involve metalloids in a significant way. The aim of our study was to identify potential links between MDD and metalloid elements [boron (B), germanium (Ge), arsenic (As), antimony (Sb)]. Methods: A total of 72 MDD cases and 75 healthy controls (HCs) were recruited from Zhumadian Second People's Hospital in Henan Province, China. The levels of four metallic elements (B, Ge, As, and Sb) in the serum and urine were measured using inductively coupled plasma mass spectrometry (ICP-MS). Results: In comparison to the HCs, the B, As, and Sb levels were considerably lower in the MDD group (p < 0.05) in the serum; the MDD group had significantly higher (p < 0.05) and significantly lower (p < 0.001) B and Sb levels in the urine. After adjusting for potential confounders, serum B (OR = 0.120; 95% CI, 0.048, 0.300; p < 0.001) and Sb (OR = 0.133; 95% CI, 0.055, 0.322; p < 0.001) showed a negative correlation with MDD. Urine B had a negative correlation (OR = 0.393; 95% CI, 0.193, 0.801; p = 0.01) with MDD, while urine Sb had a positive correlation (OR = 3.335; 95% CI, 1.654, 6.726; p = 0.001) with MDD. Conclusion: Our current research offers insightful hints for future investigation into the function of metalloids in connection to MDD processes.

2.
Mol Ther Oncol ; 32(2): 200809, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38845744

RESUMEN

Oncolytic virotherapy represents a promising approach in cancer immunotherapy. The primary delivery method for oncolytic viruses (OVs) is intratumoral injection, which apparently limits their clinical application. For patients with advanced cancer with disseminated metastasis, systemic administration is considered the optimal approach. However, the direct delivery of naked viruses through intravenous injection presents challenges, including rapid clearance by the immune system, inadequate accumulation in tumors, and significant side effects. Consequently, the development of drug delivery strategies has led to the emergence of various bio-materials serving as viral vectors, thereby improving the anti-tumor efficacy of oncolytic virotherapy. This review provides an overview of innovative strategies for delivering OVs, with a focus on nanoparticle-based or cell-based delivery systems. Recent pre-clinical and clinical studies are examined to highlight the enhanced efficacy of systemic delivery using these novel platforms. In addition, prevalent challenges in current research are briefly discussed, and potential solutions are proposed.

3.
Biochem Pharmacol ; 223: 116101, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38442793

RESUMEN

Colorectal cancer (CRC) is one of the most common causes of tumor-related deaths globally. Despite recent improvements in the comprehensive therapy of malignancy, metastatic CRC continues to have a poor prognosis. Human epidermal growth factor receptor 2 (HER2) is an established oncogenic driver, which is successfully targeted for breast and gastric cancers. Approximately 5% of CRC patients carry somatic HER2 mutations or gene amplification. In 2019, the U.S. Food and Drug Administration have approved trastuzumab and pertuzumab in combination with chemotherapy for the treatment of HER2-positive metastatic CRC. This approval marked a significant milestone in the treatment of CRC, as HER2-positive patients now have access to targeted therapies that can improve their outcomes. Yet, assessment for HER2 overexpression/ amplification in CRC has not been standardized. The resistance mechanisms to anti-HER2 therapy have been not clearly investigated in CRC. Although many unknowns remain, an improved understanding of these anti-HER2 agents will be essential for advanced CRC. In this review, we provide an overview of the role of HER2 in CRC as an oncogenic driver, a prognostic and predictive biomarker, and a clinically actionable target, as well as the current progress and challenges in the field.


Asunto(s)
Neoplasias Colorrectales , Receptor ErbB-2 , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Pronóstico , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Trastuzumab
4.
J Transl Med ; 22(1): 257, 2024 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461288

RESUMEN

BACKGROUND: Neural Tube Defects (NTDs) are congenital malformations of the central nervous system resulting from the incomplete closure of the neural tube during early embryonic development. Neuroinflammation refers to the inflammatory response in the nervous system, typically resulting from damage to neural tissue. Immune-related processes have been identified in NTDs, however, the detailed relationship and underlying mechanisms between neuroinflammation and NTDs remain largely unclear. In this study, we utilized integrated multi-omics analysis to explore the role of neuroinflammation in NTDs and identify potential prenatal diagnostic markers using a murine model. METHODS: Nine public datasets from Gene Expression Omnibus (GEO) and ArrayExpress were mined using integrated multi-omics analysis to characterize the molecular landscape associated with neuroinflammation in NTDs. Special attention was given to the involvement of macrophages in neuroinflammation within amniotic fluid, as well as the dynamics of macrophage polarization and their interactions with neural cells at single-cell resolution. We also used qPCR assay to validate the key TFs and candidate prenatal diagnostic genes identified through the integrated analysis in a retinoic acid-induced NTDs mouse model. RESULTS: Our analysis indicated that neuroinflammation is a critical pathological feature of NTDs, regulated both transcriptionally and epigenetically within central nervous system tissues. Key alterations in gene expression and pathways highlighted the crucial role of STATs molecules in the JAK-STAT signaling pathway in regulating NTDs-associated neuroinflammation. Furthermore, single-cell resolution analysis revealed significant polarization of macrophages and their interaction with neural cells in amniotic fluid, underscoring their central role in mediating neuroinflammation associated with NTDs. Finally, we identified a set of six potential prenatal diagnostic genes, including FABP7, CRMP1, SCG3, SLC16A10, RNASE6 and RNASE1, which were subsequently validated in a murine NTDs model, indicating their promise as prospective markers for prenatal diagnosis of NTDs. CONCLUSIONS: Our study emphasizes the pivotal role of neuroinflammation in the progression of NTDs and underlines the potential of specific inflammatory and neural markers as novel prenatal diagnostic tools. These findings provide important clues for further understanding the underlying mechanisms between neuroinflammation and NTDs, and offer valuable insights for the future development of prenatal diagnostics.


Asunto(s)
Multiómica , Defectos del Tubo Neural , Embarazo , Femenino , Animales , Ratones , Enfermedades Neuroinflamatorias , Estudios Prospectivos , Defectos del Tubo Neural/diagnóstico , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/inducido químicamente , Sistema Nervioso Central/patología
5.
Cell Biosci ; 13(1): 194, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875976

RESUMEN

Colorectal cancer (CRC) is the third most common cancer worldwide. One of the main causes of colorectal cancer is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). Intestinal epithelial cells (IECs), intestinal mesenchymal cells (IMCs), immune cells, and gut microbiota construct the main body of the colon and maintain colon homeostasis. In the development of colitis and colitis-associated carcinogenesis, the damage, disorder or excessive recruitment of different cells such as IECs, IMCs, immune cells and intestinal microbiota play different roles during these processes. This review aims to discuss the various roles of different cells and the crosstalk of these cells in transforming intestinal inflammation to cancer, which provides new therapeutic methods for chemotherapy, targeted therapy, immunotherapy and microbial therapy.

6.
iScience ; 26(8): 107370, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37539028

RESUMEN

Mitochondria play important roles in angiogenesis. However, the mechanisms remain elusive. In this study, we found that mitochondrial ubiquinol-cytochrome c reductase complex assembly factor 3 (UQCC3) is a key regulator of angiogenesis. TALEN-mediated knockout of Uqcc3 in mice caused embryonic lethality at 9.5-10.5 days postcoitum, and vessel density was dramatically reduced. Similarly, knockout of uqcc3 in zebrafish induced lethality post-fertilization and impaired vascular development. Knockout of UQCC3 resulted in slower tumor growth and angiogenesis. Mechanistically, UQCC3 was upregulated under hypoxia, promoted reactive oxygen species (ROS) generation, enhanced HIF-1α stability and increased VEGF expression. Finally, higher expression of UQCC3 was associated with poor prognosis in multiple types tumors, implying a role for UQCC3 in tumor progression. In conclusion, our findings highlight the important contribution of UQCC3 to angiogenesis under both physiological and pathological conditions, indicating the potential of UQCC3 as a therapeutic target for cancer.

7.
Signal Transduct Target Ther ; 8(1): 294, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37553378

RESUMEN

Cancer and impaired tissue wound healing with ageing are closely related to the quality of life of the elderly population. Given the increased incidence of cancer and the population ageing trend globally, it is very important to explore how ageing impairs tissue wound healing and spontaneous cancer. In a murine model of DSS-induced acute colitis and AOM/DSS-induced colitis-associated cancer (CAC), we found ageing significantly decreases intestinal wound healing and simultaneous CAC initiation, although ageing does not affect the incidence of AOM-induced, sporadic non-inflammatory CRC. Mechanistically, reduced fibroblasts were observed in the colitis microenvironment of ageing mice. Through conditional lineage tracing, an important source of fibroblasts potentially derived from intestinal smooth muscle cells (ISMCs) was identified orchestrating intestinal wound healing and CAC initiation in young mice. However, the number of transformed fibroblasts from ISMCs significantly decreased in ageing mice, accompanied by decreased intestinal wound healing and decreased CAC initiation. ISMCs-fibroblasts transformation in young mice and reduction of this transformation in ageing mice were also confirmed by ex-vivo intestinal muscular layer culture experiments. We further found that activation of YAP/TAZ in ISMCs is required for the transformation of ISMCs into fibroblasts. Meanwhile, the reduction of YAP/TAZ activation in ISMCs during intestinal wound healing was observed in ageing mice. Conditional knockdown of YAP/TAZ in ISMCs of young mice results in reduced fibroblasts in the colitis microenvironment, decreased intestinal wound healing and decreased CAC initiation, similar to the phenotype of ageing mice. In addition, the data from intestine samples derived from inflammatory bowel disease (IBD) patients show that activation of YAP/TAZ also occurs in ISMCs from these patients. Collectively, our work reveals an important role of the ageing stromal microenvironment in intestinal wound healing and CAC initiation. Furthermore, our work also identified a potential source of fibroblasts involved in colitis and CAC.


Asunto(s)
Neoplasias Asociadas a Colitis , Colitis , Anciano , Ratones , Humanos , Animales , Neoplasias Asociadas a Colitis/complicaciones , Calidad de Vida , Intestinos , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/genética , Cicatrización de Heridas/genética , Fibroblastos , Músculo Liso , Microambiente Tumoral
10.
Stem Cell Res Ther ; 14(1): 184, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501214

RESUMEN

BACKGROUND: Decompensated liver cirrhosis (DLC), a terminal-stage complication of liver disease, is a major cause of morbidity and mortality in patients with hepatopathies. Human umbilical cord mesenchymal stem cell (hUCMSC) therapy has emerged as a novel treatment alternative for the treatment of DLC. However, optimized therapy protocols and the associated mechanisms are not entirely understood. METHODS: We constructed a DLC rat model consistent with the typical clinical characteristics combined use of PB and CCL4. Performing dynamic detection of liver morphology and function in rats for 11 weeks, various disease characteristics of DLC and the therapeutic effect of hUCMSCs on DLC in experimental rats were thoroughly investigated, according to ascites examination, histopathological, and related blood biochemical analyses. Flow cytometry analysis of rat liver, immunofluorescence, and RT-qPCR was performed to examine the changes in the liver immune microenvironment after hucMSCs treatment. We performed RNA-seq analysis of liver and primary macrophages and hUCMSCs co-culture system in vitro to explore possible signaling pathways. PPARγ antagonist, GW9662, and clodronate liposomes were used to inhibit PPAR activation and pre-exhaustion of macrophages in DLC rats' livers, respectively. RESULTS: We found that changing the two key issues, the frequency and initial phase of hUCMSCs infusion, can affect the efficacy of hUCMSCs, and the optimal hUCMSCs treatment schedule is once every week for three weeks at the early stage of DLC progression, providing the best therapeutic effect in reducing mortality and ascites, and improving liver function in DLC rats. hUCMSCs treatment skewed the macrophage phenotype from M1-type to M2-type by activating the PPARγ signaling pathway in the liver, which was approved by primary macrophages and hUCMSCs co-culture system in vitro. Both inhibition of PPARγ activation with GW9662 and pre-exhaustion of macrophages in DLC rats' liver abolished the regulation of hUCMSCs on macrophage polarization, thus attenuating the beneficial effect of hUCMSCs treatment in DLC rats. CONCLUSIONS: These data demonstrated that the optimal hUCMSCs treatment effectively inhibits the ascites formation, prolongs survival and significantly improves liver structure and function in DLC rats through the activation of the PPARγ signaling pathway within liver macrophages. Our study compared the efficacy of different hUCMSCs infusion regimens for DLC, providing new insights on cell-based therapies for regenerative medicine.


Asunto(s)
Ascitis , PPAR gamma , Ratas , Humanos , Animales , PPAR gamma/genética , Ascitis/terapia , Cirrosis Hepática/terapia , Macrófagos , Cordón Umbilical
11.
Front Oncol ; 13: 1192128, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404752

RESUMEN

Glioblastoma is a malignant tumor with the highest morbidity and mortality in the central nervous system. Conventional surgical resection combined with radiotherapy or chemotherapy has a high recurrence rate and poor prognosis. The 5-year survival rate of patients is less than 10%. In tumor immunotherapy, CAR-T cell therapy represented by chimeric antigen receptor-modified T cells has achieved great success in hematological tumors. However, the application of CAR-T cells in solid tumors such as glioblastoma still faces many challenges. CAR-NK cells are another potential adoptive cell therapy strategy after CAR-T cells. Compared with CAR-T cell therapy, CAR-NK cells have similar anti-tumor effects. CAR-NK cells can also avoid some deficiencies in CAR-T cell therapy, a research hotspot in tumor immunity. This article summarizes the preclinical research status of CAR-NK cells in glioblastoma and the problems and challenges faced by CAR-NK in glioblastoma.

12.
Aging (Albany NY) ; 15(11): 4986-5006, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280069

RESUMEN

The present study aims to construct a predictive model for prognosis and immunotherapy response in lung adenocarcinoma (LUAD). Transcriptome data were extracted from the Cancer Genome Atlas (TCGA), GSE41271, and IMvigor210. The weighted gene correlation network analysis was utilized to identify the hub modules related to immune/stromal cells. Then, univariate, LASSO, and multivariate Cox regression analyses were employed to develop a predictive signature based on genes of the hub module. Moreover, the association between the predictive signature and immunotherapy response was also investigated. As a result, seven genes (FGF10, SERINE2, LSAMP, STXBP5, PDE5A, GLI2, FRMD6) were screened to develop the cancer associated fibroblasts (CAFs)-related risk signature (CAFRS). LUAD patients with high-risk score underwent shortened Overall survival (OS). A strong correlation was found between CAFRS and immune infiltrations/functions. The gene set variation analysis showed that G2/M checkpoint, epithelial-mesenchymal transition, hypoxia, glycolysis, and PI3K-Akt-mTOR pathways were greatly enriched in the high-risk subgroup. Moreover, patients with higher risk score were less likely to respond to immunotherapy. A nomogram based on CAFRS and Stage presented a stronger predictive performance for OS than the single indicator. In conclusion, the CAFRS exhibited a potent predictive value for OS and immunotherapy response in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Fibroblastos Asociados al Cáncer , Neoplasias Pulmonares , Humanos , Fosfatidilinositol 3-Quinasas , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/terapia , Inmunoterapia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Pronóstico
14.
Mol Biomed ; 4(1): 6, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36813914

RESUMEN

Mucopolysaccharidosis type I (MPS I) is a severe disease caused by loss-of-function mutation variants in the α-L-iduronidase (Idua) gene. In vivo genome editing represents a promising strategy to correct Idua mutations, and has the potential to permanently restore IDUA function over the lifespan of patients. Here, we used adenine base editing to directly convert A > G (TAG>TGG) in a newborn murine model harboring the Idua-W392X mutation, which recapitulates the human condition and is analogous to the highly prevalent human W402X mutation. We engineered a split-intein dual-adeno-associated virus 9 (AAV9) adenine base editor to circumvent the package size limit of AAV vectors. Intravenous injection of the AAV9-base editor system into MPS IH newborn mice led to sustained enzyme expression sufficient for correction of metabolic disease (GAGs substrate accumulation) and prevention of neurobehavioral deficits. We observed a reversion of the W392X mutation in 22.46 ± 6.74% of hepatocytes, 11.18 ± 5.25% of heart and 0.34 ± 0.12% of brain, along with decreased GAGs storage in peripheral organs (liver, spleen, lung and kidney). Collectively, these data showed the promise of a base editing approach to precisely correct a common genetic cause of MPS I in vivo and could be broadly applicable to the treatment of a wide array of monogenic diseases.

15.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-979399

RESUMEN

@#[摘 要] 近年来,随着对肿瘤抗原和抗肿瘤免疫反应机制的深入认识,肿瘤治疗性疫苗发展迅速,有望成为临床肿瘤治疗的重要手段。同时,随着新抗原的筛选、疫苗设计、疫苗递送系统、佐剂等关键技术的突破,进一步加速了这一领域的发展。在产品研发方面,众多国际大型的医药企业和新兴的生物科技公司正在布局不同的肿瘤治疗性疫苗项目,多个肿瘤治疗性疫苗获批上市,但临床效果欠佳。尽管目前肿瘤治疗性疫苗大多处于临床前和临床试验阶段,但展现出了良好的临床应用前景和市场价值。本文论述了国内外肿瘤治疗性疫苗的研发现状(主要聚焦当前发展迅速的个性化新抗原疫苗、DC疫苗和mRNA疫苗),总结了目前所面临的挑战并展望了其发展前景,为未来肿瘤治疗性疫苗的研究和产品研发提供了新思路。

16.
Oncoimmunology ; 11(1): 2127282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185809

RESUMEN

A major challenge in natural killer (NK) cell immunotherapy is the limited persistence of NK cells in vivo. However, the proliferation of NK cells is dependent on cytokines such as interleukin-2 (IL-2). Although IL-2 is a critical cytokine for NK cell activation and survival, IL-2 administration in adoptive NK cell therapy can induce adverse toxicities. To improve the persistence of NK cells and attenuate the systemic toxicity of IL-2, we constructed a cell-restricted artificial IL-2, named membrane-bound IL-2 (mbIL-2), comprising human IL-2 and human IL-2Rα joined by a classic linker. We found that mbIL-2-activated NK-92 cells can survive and proliferate in vitro and in vivo, independent of exogenous IL-2, while mbIL-2-expressing NK-92 cells do not support bystander cell survival or proliferation. Additionally, mbIL-2 enhanced NK-92 cell-mediated antitumor activity by tuning the IL-2 receptor downstream signals and NK cell receptor repertoire expression. To conclude, our novel mbIL-2 improves NK-92 cell persistence and enhances NK-92 cell-mediated antitumor activity. NK-92 cells genetically modified to express the novel mbIL-2 with potential significance for clinical development.


Asunto(s)
Interleucina-2 , Células Asesinas Naturales , Citocinas/metabolismo , Humanos , Interleucina-2/metabolismo , Interleucina-2/farmacología , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Células Asesinas Naturales/metabolismo , Receptores de Interleucina-2/metabolismo , Receptores de Células Asesinas Naturales/metabolismo
17.
Cancer Cell ; 40(9): 1044-1059.e8, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36099882

RESUMEN

Cisplatin-based chemotherapy remains the primary treatment for unresectable and metastatic muscle-invasive bladder cancers (MIBCs). However, tumors frequently develop chemoresistance. Here, we established a primary and orthotopic MIBC mouse model with gene-edited organoids to recapitulate the full course of chemotherapy in patients. We found that partial squamous differentiation, called semi-squamatization, is associated with acquired chemoresistance in both mice and human MIBCs. Multi-omics analyses showed that cathepsin H (CTSH) is correlated with chemoresistance and semi-squamatization. Cathepsin inhibition by E64 treatment induces full squamous differentiation and pyroptosis, and thus specifically restrains chemoresistant MIBCs. Mechanistically, E64 treatment activates the tumor necrosis factor pathway, which is required for the terminal differentiation and pyroptosis of chemoresistant MIBC cells. Our study revealed that semi-squamatization is a type of lineage plasticity associated with chemoresistance, suggesting that differentiation via targeting of CTSH is a potential therapeutic strategy for the treatment of chemoresistant MIBCs.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Vejiga Urinaria , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Diferenciación Celular , Cisplatino , Humanos , Ratones , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
18.
BMC Psychiatry ; 22(1): 629, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167540

RESUMEN

BACKGROUND: The pathophysiological mechanisms of aggression are manifold and they may closely interconnect. Current study aimed to determine the gut microbiota and its metabolites, and clarify their correlations with inflammation, oxidation, leaky gut and clinical profiles underlying aggression in schizophrenia (ScZ). METHODS: Serum and stool specimens from ScZ inpatients with (ScZ-Ag, 25 cases) and without aggression (NScZ-Ag, 25 cases) were collected. Systemic inflammation, oxidation and leaky gut biomarkers were determined by ELISA, gut microbiota by 16S rRNA sequencing, short-chain fatty acids (SCFAs) by gas chromatography-mass spectrometry analysis and neurotransmitters by liquid chromatograph mass spectrometry analysis. RESULTS: Significantly higher systemic pro-inflammation, pro-oxidation and leaky gut biomarkers were observed in ScZ-Ag than NScZ-Ag group (all P<0.001). Compared to NScZ-Ag group, the alpha-diversity and evenness of fecal bacterial community were much lower, the abundance of fecal genera Prevotella was significantly increased, while that Bacteroides, Faecalibacterium, Blautia, Bifidobacterium,Collinsella and Eubacterium_coprostanoligenes were remarkably reduced in ScZ-Ag group (all corrected P<0.001). Meanwhile, 6 SCFAs and 6 neurotransmitters were much lower in ScZ-Ag group (all P<0.05). Finally, a few strongly positive or negative correlations among altered gut microbiota, SCFAs, systemic pro-inflammation, leaky gut, pro-oxidation and aggression severity were detected. CONCLUSIONS: These results demonstrate that pro-inflammation, pro-oxidation and leaky gut phenotypes relating to enteric dysbacteriosis and microbial SCFAs feature the aggression onset or severity in ScZ individuals.


Asunto(s)
Microbioma Gastrointestinal , Esquizofrenia , Agresión , Biomarcadores , Citocinas , Ácidos Grasos Volátiles/análisis , Ácidos Grasos Volátiles/metabolismo , Humanos , Inflamación , Pacientes Internos , ARN Ribosómico 16S/genética
19.
Stem Cell Res Ther ; 13(1): 465, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076306

RESUMEN

BACKGROUND: Inflammatory bowel diseases (IBD) are chronic relapsing-remitting inflammatory diseases of the gastrointestinal tract that are typically categorized into two subtypes: Crohn's disease (CD) and ulcerative colitis (UC). Although MSCs therapy has achieved encouraging outcomes in IBD therapy, objective responses are limited in colon fibrosis stenosis owing to the complicated microenvironment of CD and MSCs heterogeneity of quality. Here, we chose IFN-γ and kynurenic acid (KYNA) to overcome the low response and heterogeneity of human adipose-derived MSCs (hADSCs) to treat IBD and expand the therapeutic effects based on the excellent ability of IFN-γ and KYNA to promote indoleamine 2,3-dioxygenase-1 (IDO-1) signaling, providing a potential protocol to treat IBD and fibrosis disease. METHODS: hADSCs were isolated, cultured, and identified from human abdominal adipose tissue. The CD pathology-like acute colitis and chronic colon fibrosis rat model was induced by 2,4,6-trinitrobenzen sulfonic acid (TNBS). hADSCs were pretreated in vitro with IFN-γ and KYNA and then were transplanted intravenously at day 1 and 3 of TNBS administration in colitis along with at day 1, 15, and 29 of TNBS administration in chronic colonic fibrosis. Therapeutic efficacy was evaluated by body weights, disease activity index, pathological staining, real-time PCR, Western blot, and flow cytometry. For knockout of IDO-1, hADSCs were transfected with IDO-1-targeting small gRNA carried on a CRISPR-Cas9-lentivirus vector. RESULTS: hADSCs treated with IFN-γ and KYNA significantly upregulated the expression and secretion of IDO-1, which has effectively ameliorated CD pathology-like colitis injury and fibrosis. Notably, the ability of hADSCs with IDO-1 knockout to treat colitis was significantly impaired and diminished the protective effects of the primed hADSCs with IFN-γ and KYNA. CONCLUSION: Inflammatory cytokines IFN-γ- and KYNA-treated hADSCs more effectively alleviate TNBS-induced colitis and colonic fibrosis through an IDO-1-dependent manner. Primed hADSCs are a promising new strategy to improve the therapeutic efficacy of MSCs and worth further research.


Asunto(s)
Colitis , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Células Madre Mesenquimatosas , Animales , Colitis/inducido químicamente , Enfermedad de Crohn/patología , Fibrosis , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Interferón gamma/genética , Interferón gamma/metabolismo , Ácido Quinurénico/efectos adversos , Ácido Quinurénico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratas
20.
Mol Ther Methods Clin Dev ; 25: 370-381, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35573046

RESUMEN

Mucopolysaccharidosis type I-Hurler (MPS I-H) is a neurodegenerative lysosomal storage disorder (LSD) caused by inherited defects of the α-L-iduronidase (IDUA) gene. Current treatments are ineffective for treating central nervous system (CNS) manifestations because lysosomal enzymes do not effectively cross the blood-brain barrier (BBB). To enable BBB transport of the enzyme, we engineered a modified IDUA protein by adding a brain-targeting peptide from melanotransferrin. We demonstrated that fusion of melanotransferrin peptide (MTfp) at the N terminus of human IDUA (hIDUA) was enzymatically active and could efficiently cross the BBB in vitro. Then, liver-directed gene therapy using the adeno-associated virus 8 (AAV8) vector, which encoded the modified hIDUA cDNA driven by a liver-specific expression cassette was evaluated in an adult MPS I-H mouse model. The results showed that intravenous (i.v.) infusion of AAV8 resulted in sustained supraphysiological levels of IDUA activity and normalized glycosaminoglycan (GAG) accumulation in peripheral tissues. Addition of MTfp to the hIDUA N terminus allowed efficient BBB transcytosis and IDUA activity restoration in the brain, resulting in significant improvements in brain pathology and neurobehavioral deficits. Our results provide a novel strategy to develop minimally invasive therapies for treatment of MPS I-H and other neurodegenerative LSDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...