Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 866: 161172, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36572313

RESUMEN

To provide for the globally increasing demand for proteinaceous food, microbial protein (MP) has the potential to become an alternative food or feed source. Phosphorus (P), on the other hand, is a critical raw material whose global reserves are declining. Growing MP on recovered phosphorus, for instance, struvite obtained from wastewater treatment, is a promising MP production route that could supply protein-rich products while handling P scarcity. The aim of this study was to explore struvite dissolution kinetics in different MP media and characterize MP production with struvite as sole P-source. Different operational parameters, including pH, temperature, contact surface area, and ion concentrations were tested, and struvite dissolution rates were observed between 0.32 and 4.7 g P/L/d and a solubility between 0.23 and 2.22 g P-based struvite/L. Growth rates and protein production of the microalgae Chlorella vulgaris and Limnospira sp. (previously known as Arthrospira sp.), and the purple non­sulfur bacterium Rhodopseudomonas palustris on struvite were equal to or higher than growth on conventional potassium phosphate. For aerobic heterotrophic bacteria, two slow-growing communities showed decreased growth on struvite, while the growth was increased for a third fast-growing one. Furthermore, MP protein content on struvite was always comparable to the one obtained when grown on standard media. Together with the low content in metals and micropollutants, these results demonstrate that struvite can be directly applied as an effective nutrient source to produce fast-growing MP, without any previous dissolution step. Combining a high purity recovered product with an efficient way of producing protein results in a strong environmental win-win.


Asunto(s)
Chlorella vulgaris , Compuestos de Magnesio , Estruvita/química , Solubilidad , Compuestos de Magnesio/química , Aguas Residuales , Fosfatos/química , Fósforo/química , Nutrientes
2.
Sci Total Environ ; 736: 139731, 2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32502789

RESUMEN

Supercritical water oxidation (SCWO) is a technology that can oxidize various organic (wet) wastes into CO2. Complete oxidation of specific organics with SCWO goes in tandem with tailored conditions, typically involving elevated operating temperatures, long residence times, high oxidizer-to-waste ratios, or a combination of those, which promote difficulties, e.g., corrosion. These challenges hamper the practical implementation of SCWO, albeit SCWO offers excellent oxidation efficiencies. This work proposes a novel process combining mild supercritical water oxidation (SCWO) with membrane filtration to enhance the oxidation of organics. The modified SCWO works at mild reaction conditions (i.e., 380 °C, 25 MPa and oxidizer equivalence ratios as low as 1.5) to potentially decrease the risks. The membrane filtration discards clean effluent and recycles the retentate (containing incomplete oxidized organics) back to the mild SCWO process for further oxidation, thereafter resulting in near-complete removal of organics. Fresh feed is continuously added, as in the conventional process, along with recycled retentate to guarantee the throughput of the modified SCWO process. A mixture of SCWO-resistant volatile fatty acids (TOC = 4000 mg·L-1) was studied to validate the proposed process. The proposed process in this study enhances the organic decomposition from 43.2% to 100% at mild conditions with only 10% capacity loss. CO2 was the dominant gas product with traces of CO and H2. Carbon output in the gas products increased with recirculation and got close to the carbon input of the freshly added feed ultimately. The results indicated that the proposed process maximized the benefits of both technologies, which allows the development of a technological process for supercritical water oxidation, as well as a new stratagem for waste treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA