Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(31): e2314760121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39052834

RESUMEN

Transceptors, solute transporters that facilitate intracellular entry of molecules and also initiate intracellular signaling events, have been primarily studied in lower-order species. Ammonia, a cytotoxic endogenous metabolite, is converted to urea in hepatocytes for urinary excretion in mammals. During hyperammonemia, when hepatic metabolism is impaired, nonureagenic ammonia disposal occurs primarily in skeletal muscle. Increased ammonia uptake in skeletal muscle is mediated by a membrane-bound, 12 transmembrane domain solute transporter, Rhesus blood group-associated B glycoprotein (RhBG). We show that in addition to its transport function, RhBG interacts with myeloid differentiation primary response-88 (MyD88) to initiate an intracellular signaling cascade that culminates in activation of NFκB. We also show that ammonia-induced MyD88 signaling is independent of the canonical toll-like receptor-initiated mechanism of MyD88-dependent NFκB activation. In silico, in vitro, and in situ experiments show that the conserved cytosolic J-domain of the RhBG protein interacts with the Toll-interleukin-1 receptor (TIR) domain of MyD88. In skeletal muscle from human patients, human-induced pluripotent stem cell-derived myotubes, and myobundles show an interaction of RhBG-MyD88 during hyperammonemia. Using complementary experimental and multiomics analyses in murine myotubes and mice with muscle-specific RhBG or MyD88 deletion, we show that the RhBG-MyD88 interaction is essential for the activation of NFkB but not ammonia transport. Our studies show a paradigm of substrate-dependent regulation of transceptor function with the potential for modulation of cellular responses in mammalian systems by decoupling transport and signaling functions of transceptors.


Asunto(s)
Amoníaco , Proteínas de Transporte de Membrana , Factor 88 de Diferenciación Mieloide , FN-kappa B , Transducción de Señal , Animales , Humanos , Ratones , Amoníaco/metabolismo , Hiperamonemia/metabolismo , Hiperamonemia/genética , Ratones Noqueados , Músculo Esquelético/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
2.
Biophys J ; 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38006206

RESUMEN

Embryonic development requires the establishment of cell polarity to enable cell fate segregation and tissue morphogenesis. This process is regulated by Par complex proteins, which partition into polarized membrane domains and direct downstream polarized cell behaviors. The kinase aPKC (along with its cofactor Par6) is a key member of this network and can be recruited to the plasma membrane by either the small GTPase Cdc42 or the scaffolding protein Par3. Although in vitro interactions among these proteins are well established, much is still unknown about the complexes they form during development. Here, to enable the study of membrane-associated complexes ex vivo, we used a maleic acid copolymer to rapidly isolate membrane proteins from single C. elegans zygotes into lipid nanodiscs. We show that native lipid nanodisc formation enables detection of endogenous complexes involving Cdc42, which are undetectable when cells are lysed in detergent. We found that Cdc42 interacts more strongly with aPKC/Par6 during polarity maintenance than polarity establishment, two developmental stages that are separated by only a few minutes. We further show that Cdc42 and Par3 do not bind aPKC/Par6 simultaneously, confirming recent in vitro findings in an ex vivo context. Our findings establish a new tool for studying membrane-associated signaling complexes and reveal an unexpected mode of polarity regulation via Cdc42.

3.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38009101

RESUMEN

Atypical protein kinase C (aPKC) is a major regulator of cell polarity. Acting in conjunction with Par6, Par3 and the small GTPase Cdc42, aPKC becomes asymmetrically localised and drives the polarisation of cells. aPKC activity is crucial for its own asymmetric localisation, suggesting a hitherto unknown feedback mechanism contributing to polarisation. Here we show in C. elegans zygotes that the feedback relies on CDC-42 phosphorylation at serine 71 by aPKC, which in turn results in aPKC dissociation from CDC-42. The dissociated aPKC then associates with PAR-3 clusters, which are transported anteriorly by actomyosin-based cortical flow. Moreover, the turnover of aPKC-mediated CDC-42 phosphorylation regulates the organisation of the actomyosin cortex that drives aPKC asymmetry. Given the widespread role of aPKC and Cdc42 in cell polarity, this form of self-regulation of aPKC may be vital for the robust polarisation of many cell types.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA