Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Rep ; 27(5): 1345-1355.e6, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31042463

RESUMEN

Amyloid precursor protein (APP) and its metabolites play key roles in Alzheimer's disease (AD) pathophysiology. Whereas short amyloid-ß (Aß) peptides derived from APP are pathogenic, the APP holoprotein serves multiple purposes in the nervous system through its cell adhesion and receptor-like properties. Our studies focused on the signaling mediated by the APP cytoplasmic tail. We investigated whether sustained APP signaling during brain development might favor neuronal plasticity and memory process through a direct interaction with the heterotrimeric G-protein subunit GαS (stimulatory G-protein alpha subunit). Our results reveal that APP possesses autonomous regulatory capacity within its intracellular domain that promotes APP cell surface residence, precludes Aß production, facilitates axodendritic development, and preserves cellular substrates of memory. Altogether, these events contribute to strengthening cognitive functions and are sufficient to modify the course of AD pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Memoria , Neurogénesis , Transducción de Señal , Precursor de Proteína beta-Amiloide/química , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Células Cultivadas , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal , Dominios Proteicos
3.
Mol Neurodegener ; 11(1): 59, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27488240

RESUMEN

BACKGROUND: Genome-wide association studies have identified BIN1 within the second most significant susceptibility locus in late-onset Alzheimer's disease (AD). BIN1 undergoes complex alternative splicing to generate multiple isoforms with diverse functions in multiple cellular processes including endocytosis and membrane remodeling. An increase in BIN1 expression in AD and an interaction between BIN1 and Tau have been reported. However, disparate descriptions of BIN1 expression and localization in the brain previously reported in the literature and the lack of clarity on brain BIN1 isoforms present formidable challenges to our understanding of how genetic variants in BIN1 increase the risk for AD. METHODS: In this study, we analyzed BIN1 mRNA and protein levels in human brain samples from individuals with or without AD. In addition, we characterized the BIN1 expression and isoform diversity in human and rodent tissue by immunohistochemistry and immunoblotting using a panel of BIN1 antibodies. RESULTS: Here, we report on BIN1 isoform diversity in the human brain and document alterations in the levels of select BIN1 isoforms in individuals with AD. In addition, we report striking BIN1 localization to white matter tracts in rodent and the human brain, and document that the large majority of BIN1 is expressed in mature oligodendrocytes whereas neuronal BIN1 represents a minor fraction. This predominant non-neuronal BIN1 localization contrasts with the strict neuronal expression and presynaptic localization of the BIN1 paralog, Amphiphysin 1. We also observe upregulation of BIN1 at the onset of postnatal myelination in the brain and during differentiation of cultured oligodendrocytes. Finally, we document that the loss of BIN1 significantly correlates with the extent of demyelination in multiple sclerosis lesions. CONCLUSION: Our study provides new insights into the brain distribution and cellular expression of an important risk factor associated with late-onset AD. We propose that efforts to define how genetic variants in BIN1 elevate the risk for AD would behoove to consider BIN1 function in the context of its main expression in mature oligodendrocytes and the potential for a role of BIN1 in the membrane remodeling that accompanies the process of myelination.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Enfermedad de Alzheimer/metabolismo , Proteínas Nucleares/metabolismo , Oligodendroglía/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Sustancia Blanca/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Neurogénesis/genética , Proteínas Nucleares/genética , Proteínas Supresoras de Tumor/genética , Sustancia Blanca/patología , Proteínas tau/metabolismo
4.
Elife ; 52016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27196744

RESUMEN

Presenilin 1 (PS1) is an essential γ-secretase component, the enzyme responsible for amyloid precursor protein (APP) intramembraneous cleavage. Mutations in PS1 lead to dominant-inheritance of early-onset familial Alzheimer's disease (FAD). Although expression of FAD-linked PS1 mutations enhances toxic Aß production, the importance of other APP metabolites and γ-secretase substrates in the etiology of the disease has not been confirmed. We report that neurons expressing FAD-linked PS1 variants or functionally deficient PS1 exhibit enhanced axodendritic outgrowth due to increased levels of APP intracellular C-terminal fragment (APP-CTF). APP expression is required for exuberant neurite outgrowth and hippocampal axonal sprouting observed in knock-in mice expressing FAD-linked PS1 mutation. APP-CTF accumulation initiates CREB signaling cascade through an association of APP-CTF with Gαs protein. We demonstrate that pathological PS1 loss-of-function impinges on neurite formation through a selective APP gain-of-function that could impact on axodendritic connectivity and contribute to aberrant axonal sprouting observed in AD patients.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neuronas/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Animales , Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Ratones
5.
Trends Pharmacol Sci ; 37(5): 390-411, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26837733

RESUMEN

Amyloid precursor protein (APP) and its metabolites play a key role in Alzheimer's disease pathogenesis. The idea that APP may function as a receptor has gained momentum based on its structural similarities to type I transmembrane receptors and the identification of putative APP ligands. We review the recent experimental evidence in support of this notion and discuss how this concept is viewed in the field. Specifically, we focus on the structural and functional characteristics of APP as a cell surface receptor, and on its interaction with adaptors and signaling proteins. We also address the importance of APP function as a receptor in Alzheimer's disease etiology and discuss how this function might be potentially important for the development of novel therapeutic approaches.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Humanos
6.
J Neurosci ; 32(5): 1714-29, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22302812

RESUMEN

Numerous physiological functions, including a role as a cell surface receptor, have been ascribed to Alzheimer's disease-associated amyloid precursor protein (APP). However, detailed analysis of intracellular signaling mediated by APP in neurons has been lacking. Here, we characterized intrinsic signaling associated with membrane-bound APP C-terminal fragments, which are generated following APP ectodomain release by α- or ß-secretase cleavage. We found that accumulation of APP C-terminal fragments or expression of membrane-tethered APP intracellular domain results in adenylate cyclase-dependent activation of PKA (protein kinase A) and inhibition of GSK3ß signaling cascades, and enhancement of axodendritic arborization in rat immortalized hippocampal neurons, mouse primary cortical neurons, and mouse neuroblastoma. We discovered an interaction between BBXXB motif of APP intracellular domain and the heterotrimeric G-protein subunit Gα(S), and demonstrate that Gα(S) coupling to adenylate cyclase mediates membrane-tethered APP intracellular domain-induced neurite outgrowth. Our study provides clear evidence that APP intracellular domain can have a nontranscriptional role in regulating neurite outgrowth through its membrane association. The novel functional coupling of membrane-bound APP C-terminal fragments with Gα(S) signaling identified in this study could impact several brain functions such as synaptic plasticity and memory formation.


Asunto(s)
Precursor de Proteína beta-Amiloide/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gs/fisiología , Membranas Intracelulares/fisiología , Transducción de Señal/fisiología , Adenilil Ciclasas/metabolismo , Adenilil Ciclasas/fisiología , Secuencia de Aminoácidos , Precursor de Proteína beta-Amiloide/química , Animales , Células COS , Línea Celular Transformada , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/fisiología , Proliferación Celular , Chlorocebus aethiops , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Membranas Intracelulares/química , Masculino , Ratones , Datos de Secuencia Molecular , Neuritas/fisiología , Estructura Terciaria de Proteína , Ratas
7.
Exp Brain Res ; 217(3-4): 353-64, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21960299

RESUMEN

Over two decades have passed since the original discovery of amyloid precursor protein (APP). While physiological function(s) of APP still remain a matter of debate, consensus exists that the proteolytic processing of this protein represents a critical event in the life of neurons and that abnormalities in this process are instrumental in Alzheimer's disease (AD) pathogenesis. Specific molecular components involved in APP proteolysis have been identified, and their enzymatic activities characterized in great detail. As specific proteolytic fragments of APP are identified and novel physiological effects for these fragments are revealed, more obvious becomes our need to understand the spatial organization of APP proteolysis. Valuable insights on this process have been obtained through the study of non-neuronal cells. However, much less is known about the topology of APP processing in neuronal cells, which are characterized by their remarkably complex cellular architecture and extreme degree of polarization. In this review, we discuss published literature addressing various molecular mechanisms and components involved in the trafficking and subcellular distribution of APP and APP secretases in neurons. These include the relevant machinery involved in their sorting, the identity of membranous organelles in which APP is transported, and the molecular motor-based mechanisms involved in their translocation. We also review experimental evidence specifically addressing the processing of APP at the axonal compartment. Understanding neuron-specific mechanisms of APP processing would help illuminating the physiological roles of APP-derived proteolytic fragments and provide novel insights on AD pathogenesis.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/fisiología , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/fisiología , Animales , Humanos , Neuronas/enzimología , Neuronas/patología , Procesamiento Proteico-Postraduccional , Transporte de Proteínas/fisiología , Proteolisis , Fracciones Subcelulares/enzimología , Fracciones Subcelulares/metabolismo
8.
PLoS One ; 4(12): e8287, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20016831

RESUMEN

BACKGROUND: Huntington's disease (HD) is a polyglutamine-expanded related neurodegenerative disease. Despite the ubiquitous expression of expanded, polyQ-Huntingtin (ExpHtt) in the brain, striatal neurons present a higher susceptibility to the mutation. A commonly admitted hypothesis is that Dopaminergic inputs participate to this vulnerability. We previously showed that D2 receptor stimulation increased aggregate formation and neuronal death induced by ExpHtt in primary striatal neurons in culture, and chronic D2 antagonist treatment protects striatal dysfunctions induced by ExpHtt in a lentiviral-induced model system in vivo. The present work was designed to elucidate the signalling pathways involved, downstream D2 receptor (D2R) stimulation, in striatal vulnerability to ExpHtt. METHODOLOGY/PRINCIPAL FINDINGS: Using primary striatal neurons in culture, transfected with a tagged-GFP version of human exon 1 ExpHtt, and siRNAs against D2R or D1R, we confirm that DA potentiates neuronal dysfunctions via D2R but not D1R stimulation. We demonstrate that D2 agonist treatment induces neuritic retraction and growth cone collapse in Htt- and ExpHtt expressing neurons. We then tested a possible involvement of the Rho/ROCK signalling pathway, which plays a key role in the dynamic of the cytoskeleton, in these processes. The pharmacological inhibitors of ROCK (Y27632 and Hydroxyfasudil), as well as siRNAs against ROCK-II, reversed D2-related effects on neuritic retraction and growth cone collapse. We show a coupling between D2 receptor stimulation and Rho activation, as well as hyperphosphorylation of Cofilin, a downstream effector of ROCK-II pathway. Importantly, D2 agonist-mediated potentiation of aggregate formation and neuronal death induced by ExpHtt, was totally reversed by Y27632 and Hydroxyfasudil and ROCK-II siRNAs. CONCLUSIONS/SIGNIFICANCE: Our data provide the first demonstration that D2R-induced vulnerability in HD is critically linked to the activation of the Rho/ROCK signalling pathway. The inclusion of Rho/ROCK inhibitors could be an interesting therapeutic option aimed at forestalling the onset of the disease.


Asunto(s)
Neostriado/fisiopatología , Neuronas/enzimología , Péptidos/toxicidad , Receptores de Dopamina D2/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/toxicidad , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Muerte Celular/efectos de los fármacos , Dopamina/farmacología , Activación Enzimática/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/patología , Humanos , Ratones , Neostriado/efectos de los fármacos , Neostriado/enzimología , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Estructura Cuaternaria de Proteína , Quinpirol/farmacología , ARN Interferente Pequeño , Receptores de Dopamina D1/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Expansión de Repetición de Trinucleótido/genética
9.
Dev Biol ; 324(1): 152-60, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18801357

RESUMEN

Neural crest-like cells (NCLC) that express the HNK-1 antigen and form body pigment cells were previously identified in diverse ascidian species. Here we investigate the embryonic origin, migratory activity, and neural crest related gene expression patterns of NCLC in the ascidian Ciona intestinalis. HNK-1 expression first appeared at about the time of larval hatching in dorsal cells of the posterior trunk. In swimming tadpoles, HNK-1 positive cells began to migrate, and after metamorphosis they were localized in the oral and atrial siphons, branchial gill slits, endostyle, and gut. Cleavage arrest experiments showed that NCLC are derived from the A7.6 cells, the precursors of trunk lateral cells (TLC), one of the three types of migratory mesenchymal cells in ascidian embryos. In cleavage arrested embryos, HNK-1 positive TLC were present on the lateral margins of the neural plate and later became localized adjacent to the posterior sensory vesicle, a staging zone for their migration after larval hatching. The Ciona orthologues of seven of sixteen genes that function in the vertebrate neural crest gene regulatory network are expressed in the A7.6/TLC lineage. The vertebrate counterparts of these genes function downstream of neural plate border specification in the regulatory network leading to neural crest development. The results suggest that NCLC and neural crest cells may be homologous cell types originating in the common ancestor of tunicates and vertebrates and support the possibility that a putative regulatory network governing NCLC development was co-opted to produce neural crest cells during vertebrate evolution.


Asunto(s)
Evolución Biológica , Ciona intestinalis/embriología , Ciona intestinalis/crecimiento & desarrollo , Cresta Neural/embriología , Cresta Neural/crecimiento & desarrollo , Animales , Antígenos CD57/biosíntesis , Linaje de la Célula , Ciona intestinalis/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Cresta Neural/citología , Neurogénesis
10.
Neurobiol Dis ; 29(1): 22-9, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17905594

RESUMEN

Huntington's disease (HD) results from an abnormal polyglutamine extension in the N-terminal region of the huntingtin protein. This mutation causes preferential degeneration of striatal projection neurons. We previously demonstrated, in vitro, that dopaminergic D2 receptor stimulation acted synergistically with mutated huntingtin (expHtt) to increase aggregate formation and striatal death. In the present work, we extend these observations to an in vivo system based on lentiviral-mediated expression of expHtt in the rat striatum. The early and chronic treatment with the D2 antagonist haloperidol decanoate protects striatal neurons from expHtt-induced dysfunction, as analyzed by DARPP-32 and NeuN stainings. Haloperidol treatment also reduces aggregates formation, an effect that is maintained over time. These findings indicate that D2 receptors activation contributes to the deleterious effects of expHtt on striatal function and may represent an interesting early target to alter the subsequent course of neuropathology in HD.


Asunto(s)
Antipsicóticos/uso terapéutico , Cuerpo Estriado/patología , Haloperidol/análogos & derivados , Enfermedad de Huntington/prevención & control , Mutación/fisiología , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Proteínas Nucleares/genética , Factores de Edad , Animales , Recuento de Células/métodos , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Haloperidol/uso terapéutico , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/patología , Lentivirus/fisiología , Fosfopiruvato Hidratasa/metabolismo , Ratas , Ratas Wistar
11.
FASEB J ; 22(4): 1083-93, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18029446

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder due to an abnormal polyglutamine expansion in the N-terminal region of huntingtin protein (Exp-Htt). This expansion causes protein aggregation and neuronal dysfunction and death. Transcriptional dysregulation due to Exp-Htt participates in neuronal death in HD. Here, using the R6/2 transgenic mouse model of HD, we identified a new molecular alteration that could account for gene dysregulation in these mice. Despite a nuclear activation of the mitogen-activated protein kinase/extracellular regulated kinase (ERK) along with Elk-1 and cAMP responsive element binding, two transcription factors involved in c-Fos transcription, we failed to detect any histone H3 phosphorylation, which is expected after nuclear ERK activation. Accordingly, we found in the striatum of these mice a deficiency of mitogen- and stress-activated kinase-1 (MSK-1), a kinase downstream ERK, critically involved in H3 phosphorylation and c-Fos induction. We extended this observation to Exp-Htt-expressing striatal neurons and postmortem brains of HD patients. In vitro, knocking out MSK-1 expression potentiated Exp-Htt-induced striatal death. Its overexpression induced H3 phosphorylation and c-Fos expression and totally protected against striatal neurodegeneration induced by Exp-Htt. We propose that MSK-1 deficiency is involved in transcriptional dysregulation and striatal degeneration. Restoration of its expression and activity may be a new therapeutic target in HD.


Asunto(s)
Cuerpo Estriado/enzimología , Expansión de las Repeticiones de ADN , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/deficiencia , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transcripción Genética , Animales , Cuerpo Estriado/metabolismo , Regulación hacia Abajo , Genes fos , Histonas/metabolismo , Proteína Huntingtina , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/metabolismo , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética
12.
Eur J Neurosci ; 24(8): 2299-308, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17074050

RESUMEN

Summary The central nervous system (cerebral ganglion) of adult ascidians is linked to the neural gland complex (NGC), which consists of a dorsal tubercle, a ciliated duct and a neural gland. The function of the NGC has been the subject of much debate. The recent publication of the complete genomic sequence of Ciona intestinalis provides new opportunities to examine the presence and distribution of protein families in this basal chordate. We focus here on the ascidian neuropeptide G-protein-coupled receptors (GPCRs), the vertebrate homologues of which are involved in homeostasis. In situ hybridization revealed that five Ciona GPCRs [vasopressin receptor, somatostatin receptor, CRH (corticotropin-releasing hormone) receptor, angiotensin receptor and tachykinin receptor] are expressed in the NGC of adult ascidians. These findings, together with histological and ultrastructural data, provide evidence to support a role for the ascidian NGC in maintaining ionic homeostasis. We further speculate about the potential similarities between the ascidian NGC and the vertebrate choroid plexus, a neural peri-ventricular organ.


Asunto(s)
Ciona intestinalis/fisiología , Glándulas Exocrinas/fisiología , Núcleos Talámicos de la Línea Media/fisiología , Equilibrio Hidroelectrolítico/fisiología , Animales , Cilios/fisiología , Hormona Liberadora de Corticotropina/metabolismo , Células Epiteliales/fisiología , Homeostasis/fisiología , Hibridación in Situ , Filogenia , ARN/biosíntesis , ARN/genética , Receptores de Angiotensina/biosíntesis , Receptores Acoplados a Proteínas G/fisiología , Receptores de Somatostatina/metabolismo , Receptores de Taquicininas/biosíntesis , Receptores de Vasopresinas/metabolismo
13.
Proc Natl Acad Sci U S A ; 103(23): 8727-32, 2006 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-16735475

RESUMEN

The craniate head is innervated by cranial sensory and motor neurons. Cranial sensory neurons stem from the neurogenic placodes and neural crest and are seen as evolutionary innovations crucial in fulfilling the feeding and respiratory needs of the craniate "new head." In contrast, cranial motoneurons that are located in the hindbrain and motorize the head have an unclear phylogenetic status. Here we show that these motoneurons are in fact homologous to the motoneurons of the sessile postmetamorphic form of ascidians. The motoneurons of adult Ciona intestinalis, located in the cerebral ganglion and innervating muscles associated with the huge "branchial basket," express the transcription factors CiPhox2 and CiTbx20, whose vertebrate orthologues collectively define cranial motoneurons of the branchiovisceral class. Moreover, Ciona's postmetamorphic motoneurons arise from a hindbrain set aside during larval life and defined as such by its position (caudal to the prosensephalic sensory vesicle) and coexpression of CiPhox2 and CiHox1, whose orthologues collectively mark the vertebrate hindbrain. These data unveil that the postmetamorphic ascidian brain, assumed to be a derived feature, in fact corresponds to the vertebrate hindbrain and push back the evolutionary origin of cranial nerves to before the origin of craniates.


Asunto(s)
Ciona intestinalis/citología , Cabeza/inervación , Neuronas Motoras/citología , Animales , Ciona intestinalis/embriología , Ciona intestinalis/crecimiento & desarrollo , Embrión no Mamífero/citología , Ganglión/metabolismo , Proteínas de Homeodominio/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Metamorfosis Biológica , Ratones , Datos de Secuencia Molecular , Proteínas de Dominio T Box/metabolismo
14.
Eur J Neurosci ; 21(11): 3043-55, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15978015

RESUMEN

Dopamine is a major neuromodulator synthesized by numerous cell populations in the vertebrate forebrain and midbrain. Owing to the simple organization of its larval nervous system, ascidian tunicates provide a useful model to investigate the anatomy, neurogenesis and differentiation of the dopaminergic neural network underlying the stereotypical swimming behaviour of its chordate-type larva. This study provides a high-resolution cellular analysis of tyrosine hydroxylase (TH)-positive and dopamine-positive cells in Ciona intestinalis embryos and larvae. Dopamine cells are present only in the sensory vesicle of the Ciona larval brain, which may be an ancestral chordate feature. The dopamine-positive cells of the ascidian sensory vesicle are located in the expression domain of homologues of vertebrate hypothalamic markers. We show here that the larval coronet cells also arise from this domain. As a similar association between coronet cells and the hypothalamus was reported in bony and cartilaginous fishes, we propose that part of the ascidian ventral sensory vesicle is the remnant of a proto-hypothalamus that may have been present in the chordate ancestor. As dopaminergic cells are specified in the hypothalamus in all vertebrates, we suggest that the mechanisms of dopamine cell specification are conserved in the hypothalamus of Ciona and vertebrates. To test this hypothesis, we have identified new candidate regulators of dopaminergic specification in Ciona based on their expression patterns, which can now be compared with those in vertebrates.


Asunto(s)
Ciona intestinalis/metabolismo , Dopamina/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Animales , Evolución Biológica , Biomarcadores/metabolismo , Tipificación del Cuerpo/genética , Diferenciación Celular/fisiología , Ciona intestinalis/citología , Ciona intestinalis/crecimiento & desarrollo , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica/genética , Hipotálamo/citología , Hipotálamo/crecimiento & desarrollo , Larva/citología , Larva/crecimiento & desarrollo , Datos de Secuencia Molecular , Red Nerviosa/citología , Red Nerviosa/embriología , Red Nerviosa/crecimiento & desarrollo , Filogenia , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo
15.
Dev Dyn ; 234(3): 698-708, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15973736

RESUMEN

Despite the fact that a large body of factors that play important roles in development are known, there are still large gaps in understanding the genetic pathways that govern these processes. To find previously unknown genes that are expressed during embryonic development, we optimized and performed an automated whole-mount in situ hybridization screen on medaka embryos at the end of somitogenesis. Partial cDNA sequences were compared against public databases and identified according to similarities found to other genes and gene products. Among 321 isolated genes showing specific expression in the central nervous system in at least one of five stages of development, 55.14% represented genes whose functions are already documented (in fish or other model organisms). Additionally, 16.51% were identified as conserved unknown genes or genes with unknown function. We provide new data on eight of these genes that presented a restricted expression pattern that allowed for formulating testable hypotheses on their developmental roles, and that were homologous to mammalian molecules of unknown function. Thus, gene expression screening in medaka is an efficient tool for isolating new regulators of embryonic development, and can complement genome-sequencing projects that are producing a high number of genes without ascribed functions.


Asunto(s)
Perfilación de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/metabolismo , Oryzias/genética , Envejecimiento/fisiología , Animales , Automatización , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , ARN Mensajero/genética
16.
Dev Dyn ; 232(2): 468-78, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15614778

RESUMEN

The colonial ascidians reproduce either sexually or asexually, having evolved a rich variety of modes of propagative development. During embryogenesis, the fertilized egg develops into a swimming tadpole larva that subsequently metamorphoses into a sessile oozooid. Clonal individuals (blastozooids), resembling oozooids, are formed from few bud-forming multipotent somatic cells, following a wide range of ways that seem to characterize each family of this class. Here, we compare these two developmental processes in the compound ascidian species Botryllus schlosseri to determine whether similar gene activities are used during embryogenesis/metamorphosis and recruited in the asexual development. We analyzed expression of Pitx, a Paired-related homeobox gene. Pitx genes are key developmental genes in vertebrates, and their expression is reported to be conserved in chordate stomodea and in the establishment of left/right asymmetries. Here, we report full-length cDNA cloning of a B. schlosseri Pitx ortholog (Bs-Pitx) and expression analysis during both embryo/metamorphosis and blastogenesis. During organogenesis of both developmental sequences, Bs-Pitx was detected in identical domains: the stomodeum/neural complex and asymmetrically in the left digestive system. In striking contrast, expression patterns at early stages differ deeply. These observations provide the first evidence for a key developmental gene being deployed in essentially similar ways in two different developmental sequences that eventually give rise to similar zooids.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Urocordados/embriología , Secuencia de Aminoácidos , Animales , Tipificación del Cuerpo , Clonación Molecular , ADN Complementario/metabolismo , Hibridación in Situ , Modelos Anatómicos , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido
17.
Dev Biol ; 277(2): 567-79, 2005 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-15617694

RESUMEN

In extant chordates, the overall patterning along the anteroposterior and dorsoventral axes of the neural tube is remarkably conserved. It has thus been proposed that four domains corresponding to the vertebrate presumptive forebrain, midbrain-hindbrain transition, hindbrain, and spinal cord were already present in the common chordate ancestor. To obtain insights on the evolution of the patterning of the anterior neural tube, we performed a study aimed at characterizing the expression of regulatory genes in the sensory vesicle of Ciona intestinalis, the anteriormost part of the central nervous system (CNS) related to the vertebrate forebrain, at tailbud stages. Selected genes encoded primarily for homologues of transcription factors involved in vertebrate forebrain patterning. Seven of these genes were expressed in the ventral sensory vesicle. A prominent feature of these ascidian genes is their restricted and complementary domains of expression at tailbud stages. These patterning markers thus refine the map of the developing sensory vesicle. Furthermore, they allow us to propose that a large part of the ventral and lateral sensory vesicle consists in a patterning domain corresponding to the vertebrate presumptive hypothalamus.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo , Sistema Nervioso Central/embriología , Ciona intestinalis/embriología , Regulación del Desarrollo de la Expresión Génica , Genes Reguladores/genética , Hipotálamo , Animales , Elementos sin Sentido (Genética)/genética , Sistema Nervioso Central/metabolismo , Ciona intestinalis/metabolismo , Hibridación in Situ , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...