Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Genet ; 56(6): 1257-1269, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38802564

RESUMEN

Na+ exclusion from above-ground tissues via the Na+-selective transporter HKT1;5 is a major salt-tolerance mechanism in crops. Using the expression genome-wide association study and yeast-one-hybrid screening, we identified TaSPL6-D, a transcriptional suppressor of TaHKT1;5-D in bread wheat. SPL6 also targeted HKT1;5 in rice and Brachypodium. A 47-bp insertion in the first exon of TaSPL6-D resulted in a truncated peptide, TaSPL6-DIn, disrupting TaHKT1;5-D repression exhibited by TaSPL6-DDel. Overexpressing TaSPL6-DDel, but not TaSPL6-DIn, led to inhibited TaHKT1;5-D expression and increased salt sensitivity. Knockout of TaSPL6-DDel in two wheat genotypes enhanced salinity tolerance, which was attenuated by a further TaHKT1;5-D knockdown. Spike development was preserved in Taspl6-dd mutants but not in Taspl6-aabbdd mutants. TaSPL6-DIn was mainly present in landraces, and molecular-assisted introduction of TaSPL6-DIn from a landrace into a leading wheat cultivar successfully improved yield on saline soils. The SPL6-HKT1;5 module offers a target for the molecular breeding of salt-tolerant crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Tolerancia a la Sal , Triticum , Triticum/genética , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Proteínas de Transporte de Catión/genética , Estudio de Asociación del Genoma Completo , Oryza/genética , Simportadores/genética , Simportadores/metabolismo , Pan , Plantas Modificadas Genéticamente , Brachypodium/genética , Salinidad
2.
Proc Natl Acad Sci U S A ; 121(17): e2314353121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38635634

RESUMEN

Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas F-Box , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Ubiquitinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas F-Box/genética , Proteínas F-Box/metabolismo
3.
Plants (Basel) ; 12(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38140438

RESUMEN

The precise control of free auxin (indole-3-acetic acid, IAA) gradient, which is orchestrated by biosynthesis, conjugation, degradation, hydrolyzation, and transport, is critical for all aspects of plant growth and development. Of these, the GRETCHEN HAGEN 3 (GH3) acyl acid amido synthetase family, pivotal in conjugating IAA with amino acids, has garnered significant interest. Recent advances in understanding GH3-dependent IAA conjugation have positioned GH3 functional elucidation as a hot topic of research. This review aims to consolidate and discuss recent findings on (i) the enzymatic mechanisms driving GH3 activity, (ii) the influence of chemical inhibitor on GH3 function, and (iii) the transcriptional regulation of GH3 and its impact on plant development and stress response. Additionally, we explore the distinct biological functions attributed to IAA-amino acid conjugates.

4.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239863

RESUMEN

The indole-3-pyruvic acid (IPA) pathway is the main auxin biosynthesis pathway in the plant kingdom. Local control of auxin biosynthesis through this pathway regulates plant growth and development and the responses to biotic and abiotic stresses. During the past decades, genetic, physiological, biochemical, and molecular studies have greatly advanced our understanding of tryptophan-dependent auxin biosynthesis. The IPA pathway includes two steps: Trp is converted to IPA by TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS/TRYPTOPHAN AMINOTRANSFERASE RELATED PROTEINs (TAA1/TARs), and then IPA is converted to IAA by the flavin monooxygenases (YUCCAs). The IPA pathway is regulated at multiple levels, including transcriptional and post-transcriptional regulation, protein modification, and feedback regulation, resulting in changes in gene transcription, enzyme activity and protein localization. Ongoing research indicates that tissue-specific DNA methylation and miRNA-directed regulation of transcription factors may also play key roles in the precise regulation of IPA-dependent auxin biosynthesis in plants. This review will mainly summarize the regulatory mechanisms of the IPA pathway and address the many unresolved questions regarding this auxin biosynthesis pathway in plants.


Asunto(s)
Ácidos Indolacéticos , Plantas , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Triptófano-Transaminasa/genética , Triptófano-Transaminasa/metabolismo
5.
J Plant Physiol ; 280: 153891, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36495813

RESUMEN

1,9-decanediol (1,9-D) is a biological nitrification inhibitor secreted in roots, which effectively inhibits soil nitrifier activity and reduces nitrogen loss from agricultural fields. However, the effects of 1,9-D on plant root growth and the involvement of signaling pathways in the plant response to 1,9-D have not been investigated. Here, we report that 1,9-D, in the 100-400 µM concentration range, promotes primary root length in Arabidopsis seedlings at 3d and 5d, by 10.1%-33.3% and 6.9%-32.6%, and, in a range of 50-200 µM, leads to an increase in the number of lateral roots. 150 µM 1,9-D was found optimum for the positive regulation of root growth. qRT-PCR analysis reveals that 1,9-D can significantly increase AtABA3 gene expression and that a mutation in ABA3 results in insensitivity of root growth to 1,9-D. Moreover, through pharmacological experiments, we show that exogenous addition of ABA (abscisic acid) with 1,9-D enhances primary root length by 23.5%-63.3%, and an exogenous supply of 1,9-D with the ABA inhibitor Flu reduces primary root length by 1.0%-14.3%. Primary root length of the pin2/eir1-1 is shown to be insensitive to both exogenous addition of 1,9-D and ABA, indicating that the auxin carrier PIN2/EIR1 is involved in promotion of root growth by 1,9-D. These results suggest a novel for 1,9-D in regulating plant root growth through ABA and auxin signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Oryza/metabolismo , Nitrificación , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Commun Biol ; 5(1): 1410, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550195

RESUMEN

The auxin IAA (Indole-3-acetic acid) plays key roles in regulating plant growth and development, which depends on an intricate homeostasis that is determined by the balance between its biosynthesis, metabolism and transport. YUC flavin monooxygenases catalyze the rate-limiting step of auxin biosynthesis via IPyA (indole pyruvic acid) and are critical targets in regulating auxin homeostasis. Despite of numerous reports on the transcriptional regulation of YUC genes, little is known about those at the post-translational protein level. Here, we show that loss of function of CKRC3/TCU2, the auxiliary subunit (Naa25) of Arabidopsis NatB, and/or of its catalytic subunit (Naa20), NBC, led to auxin-deficiency in plants. Experimental evidences show that CKRC3/TCU2 can interact with NBC to form a NatB complex, catalyzing the N-terminal acetylation (NTA) of YUC proteins for their intracellular stability to maintain normal auxin homeostasis in plants. Hence, our findings provide significantly new insight into the link between protein NTA and auxin biosynthesis in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Acetilación , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Homeostasis
7.
Front Plant Sci ; 13: 959053, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017262

RESUMEN

Auxin is one of the most important plant growth regulators of plant morphogenesis and response to environmental stimuli. Although the biosynthesis pathway of auxin has been elucidated, the mechanisms regulating auxin biosynthesis remain poorly understood. The transcription of auxin biosynthetic genes is precisely regulated by complex signaling pathways. When the genes are expressed, epigenetic modifications guide mRNA synthesis and therefore determine protein production. Recent studies have shown that different epigenetic factors affect the transcription of auxin biosynthetic genes. In this review, we focus our attention on the molecular mechanisms through which epigenetic modifications regulate auxin biosynthesis.

8.
Plant Cell Environ ; 45(5): 1537-1553, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35133011

RESUMEN

Rice is known for its superior adaptation to ammonium (NH4+ ) as a nitrogen source. Compared to many other cereals, it displays lower NH4+ efflux in roots and higher nitrogen-use efficiency on NH4+ . A critical role for GDP-mannose pyrophosphorylase (VTC1) in controlling root NH4+ fluxes was previously documented in Arabidopsis, but the molecular pathways involved in regulating VTC1-dependent NH4+ efflux remain unclear. Here, we report that ETHYLENE-INSENSITIVE3-LIKE1 (OsEIL1) acts as a key transcription factor regulating OsVTC1-3-dependent NH4+ efflux and protein N-glycosylation in rice grown under NH4+ nutrition. We show that OsEIL1 in rice plays a contrasting role to Arabidopsis-homologous ETHYLENE-INSENSITIVE3 (AtEIN3) and maintains rice growth under NH4+ by stabilizing protein N-glycosylation and reducing root NH4+ efflux. OsEIL1 constrains NH4+ efflux by activation of OsVTC1-3, but not OsVTC1-1 or OsVTC1-8. OsEIL1 binds directly to the promoter EIN3-binding site (EBS) of OsVTC1-3 in vitro and in vivo and acts to increase the transcription of OsVTC1-3. Our work demonstrates an important link between excessive root NH4+ efflux and OsVTC1-3-mediated protein N-glycosylation in rice grown under NH4+ nutrition and identifies OsEIL1 as a direct genetic regulator of OsVTC1-3 expression.


Asunto(s)
Compuestos de Amonio , Arabidopsis , Oryza , Compuestos de Amonio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicosilación , Nitrógeno/metabolismo , Oryza/metabolismo , Raíces de Plantas/metabolismo
9.
Int J Mol Sci ; 23(1)2022 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-35008937

RESUMEN

Auxin, primarily indole-3-acetic acid (IAA), is a versatile signal molecule that regulates many aspects of plant growth, development, and stress response. Recently, microRNAs (miRNAs), a type of short non-coding RNA, have emerged as master regulators of the auxin response pathways by affecting auxin homeostasis and perception in plants. The combination of these miRNAs and the autoregulation of the auxin signaling pathways, as well as the interaction with other hormones, creates a regulatory network that controls the level of auxin perception and signal transduction to maintain signaling homeostasis. In this review, we will detail the miRNAs involved in auxin signaling to illustrate its in planta complex regulation.


Asunto(s)
MicroARNs/metabolismo , Desarrollo de la Planta , Plantas/metabolismo , Transducción de Señal , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas/genética , Receptores de Superficie Celular/metabolismo
10.
J Plant Physiol ; 268: 153586, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34906796

RESUMEN

Elevated [CO2] can increase rice biomass and yield, but the degree of this increase varies substantially among cultivars. Little is known about the gene loci involved in the acclimation and adaptation to elevated [CO2] in rice. Here, we report on a T-DNA insertion mutant in japonica rice exhibiting a significantly enhanced response to elevated [CO2] compared with the wild type (WT). The root biomass response of the mutant was higher than that of the WT, and this manifested in the number of adventitious roots, the average diameter of roots, and total root length. Furthermore, coarse roots (>0.6 mm) and thin lateral roots (<0.2 mm) were more responsive to elevated [CO2] in the mutant. When exposed to lower light intensity, however, the response of the mutant to elevated [CO2] was not superior to that of the WT, indicating that the high response of the mutant under elevated [CO2] was dependent on light intensity. The T-DNA insertion site was located in the promoter region of the OsGF14b gene, and insertion resulted in a significant decrease in OsGF14b expression. Our results indicate that knockout of OsGF14b may improve the response to elevated [CO2] in rice by enhancing carbon allocation to coarse roots and to fine lateral roots.


Asunto(s)
Dióxido de Carbono , Oryza , Proteínas de Plantas/fisiología , Raíces de Plantas/fisiología , Biomasa , Nitrógeno , Oryza/genética , Oryza/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética
11.
New Phytol ; 232(1): 190-207, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34128546

RESUMEN

Ammonium (NH4+ ) is toxic to root growth in most plants, even at moderate concentrations. Transcriptional regulation is one of the most important mechanisms in the response of plants to NH4+ toxicity, but the nature of the involvement of transcription factors (TFs) in this regulation remains unclear. Here, RNA-seq analysis was performed on Arabidopsis roots to screen for ammonium-responsive TFs. WRKY46, the member of the WRKY transcription factor family most responsive to NH4+ , was selected. We defined the role of WRKY46 using mutation and overexpression assays, and characterized the regulation of NUDX9 and indole-3-acetic acid (IAA)-conjugating genes by WRKY46 via yeast one-hybrid and electrophoretic mobility shift assays and chromatin immunoprecipitation-quantitative real-time polymerase chain reaction (ChIP-qPCR). Knockout of WRKY46 increased, while overexpression of WRKY46 decreased, NH4+ -suppression of the primary root. WRKY46 is shown to directly bind to the promoters of the NUDX9 and IAA-conjugating genes (GH3.1, GH3.6, UGT75D1, UGT84B2) and to inhibit their transcription, thus positively regulating free IAA content and stabilizing protein N-glycosylation, leading to an inhibition of NH4+ efflux in the root elongation zone (EZ). We identify TF involvement in the regulation of NH4+ efflux in the EZ, and show that WRKY46 inhibits NH4+ efflux by negative regulation of NUDX9 and IAA-conjugating genes.


Asunto(s)
Compuestos de Amonio , Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
12.
J Plant Physiol ; 261: 153415, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33894579

RESUMEN

Ammonium (NH4+) inhibits primary root (PR) growth in most plant species when present even at moderate concentrations. Previous studies have shown that transport of indole-3-acetic acid (IAA) is critical to maintaining root elongation under high-NH4+ stress. However, the precise regulation of IAA homeostasis under high-NH4+ stress (HAS) remains unclear. In this study, qRT-PCR, RNA-seq, free IAA and IAA conjugate and PR elongation measurements were conducted in genetic mutants to investigate the role of IAA biosynthesis and conjugation under HAS. Our data clearly show that HAS decreases free IAA in roots by increasing IAA inactivation but does not decrease IAA biosynthesis, and that the IAA-conjugating genes GH3.1, GH3.2, GH3.3, GH3.4, and GH3.6 function as the key genes in regulating high-NH4+ sensitivity in the roots. Furthermore, the analysis of promoter::GUS staining in situ and genetic mutants reveals that HAS promotes IAA conjugation in the elongation zone (EZ), which may be responsible for the PR inhibition observed under HAS. This study provides potential new insight into the role of auxin in the improvement of tolerance to NH4+.


Asunto(s)
Compuestos de Amonio/metabolismo , Arabidopsis/crecimiento & desarrollo , Ácidos Indolacéticos/farmacología , Raíces de Plantas/crecimiento & desarrollo , Compuestos de Amonio/administración & dosificación , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Homeostasis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Estrés Fisiológico
13.
J Exp Bot ; 72(12): 4548-4564, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33772588

RESUMEN

Ammonium (NH4+) is toxic to root growth in most plants already at moderate levels of supply, but mechanisms of root growth tolerance to NH4+ remain poorly understood. Here, we report that high levels of NH4+ induce nitric oxide (NO) accumulation, while inhibiting potassium (K+) acquisition via SNO1 (sensitive to nitric oxide 1)/SOS4 (salt overly sensitive 4), leading to the arrest of primary root growth. High levels of NH4+ also stimulated the accumulation of GSNOR (S-nitrosoglutathione reductase) in roots. GSNOR overexpression improved root tolerance to NH4+. Loss of GSNOR further induced NO accumulation, increased SNO1/SOS4 activity, and reduced K+ levels in root tissue, enhancing root growth sensitivity to NH4+. Moreover, the GSNOR-like gene, OsGSNOR, is also required for NH4+ tolerance in rice. Immunoblotting showed that the NH4+-induced GSNOR protein accumulation was abolished in the VTC1- (vitamin C1) defective mutant vtc1-1, which is hypersensititive to NH4+ toxicity. GSNOR overexpression enhanced vtc1-1 root tolerance to NH4+. Our findings suggest that induction of GSNOR increases NH4+ tolerance in Arabidopsis roots by counteracting NO-mediated suppression of tissue K+, which depends on VTC1 function.


Asunto(s)
Compuestos de Amonio , Arabidopsis , Oryza , Aldehído Oxidorreductasas/genética , Arabidopsis/genética , Proteínas de Arabidopsis , Glutatión Reductasa , Homeostasis , Oryza/genética , Oxidorreductasas , Potasio , S-Nitrosoglutatión
14.
Commun Biol ; 4(1): 206, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589721

RESUMEN

The auxin IAA is a vital plant hormone in controlling growth and development, but our knowledge about its complicated biosynthetic pathways and molecular regulation are still limited and fragmentary. cytokinin induced root waving 2 (ckrw2) was isolated as one of the auxin-deficient mutants in a large-scale forward genetic screen aiming to find more genes functioning in auxin homeostasis and/or its regulation. Here we show that CKRW2 is identical to Histone Monoubiquitination 1 (HUB1), a gene encoding an E3 ligase required for histone H2B monoubiquitination (H2Bub1) in Arabidopsis. In addition to pleiotropic defects in growth and development, loss of CKRW2/HUB1 function also led to typical auxin-deficient phenotypes in roots, which was associated with significantly lower expression levels of several functional auxin synthetic genes, namely TRP2/TSB1, WEI7/ASB1, YUC7 and AMI1. Corresponding defects in H2Bub1 were detected in the coding regions of these genes by chromatin immunoprecipitation (ChIP) analysis, indicating the involvement of H2Bub1 in regulating auxin biosynthesis. Importantly, application of exogenous cytokinin (CK) could stimulate CKRW2/HUB1 expression, providing an epigenetic avenue for CK to regulate the auxin homeostasis. Our results reveal a previously unknown mechanism for regulating auxin biosynthesis via HUB1/2-mediated H2Bub1 at the chromatin level.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ensamble y Desensamble de Cromatina , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Citocininas/farmacología , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Histonas/genética , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Transcripción Genética/efectos de los fármacos , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
15.
J Plant Physiol ; 251: 153191, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32585498

RESUMEN

Great progress has been achieved in developing hybrid "super rice" varieties in China. Understanding morphological root traits in super rice and the mechanisms of nitrogen acquisition by the root system are of fundamental importance to developing proper fertilisation and nutrient management practices in their production. The present study was designed to study morphological and physiological traits in hybrid super rice roots that are associated with nitrogen use efficiency (NUE). Two hybrid super rice varieties (Yongyou12, YY; Jiayou 6, JY) and one common variety (Xiushui 134, XS) with differing NUE were cultivated hydroponically, and morphological and physiological traits of seedling roots in response to varying nitrogen conditions were investigated. Our results show that the hybrid cultivars YY and JY exhibit larger root systems, arising from a maximisation of root tips and from longer roots without changes in root diameter. The cross-sectional proportion of aerenchyma was significantly higher in super rice roots. The larger root system of super hybrid rice contributed to higher N accumulation and resulted in higher N uptake efficiency. 15N (15NH4+) labeling results show that YY and JY had an enhanced capacity for ammonium (NH4+) uptake. Moreover, YY and JY were more tolerant to high NH4+ and showed reduced futile NH4+ efflux. NH4+ efflux in the root elongation zone, measured by Non-invasive Micro-test Technology, was significantly lower than in XS. Taken together, our results suggest that a longer root, a larger number of tips, a better developed aerenchyma, a higher capacity for N uptake, and reduced NH4+ efflux from roots are associated with higher NUE and growth performance in hybrid super rice.


Asunto(s)
Nitrógeno/metabolismo , Oryza/metabolismo , Raíces de Plantas , Hibridación Genética , Oryza/genética , Fitomejoramiento , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Plantones/genética , Plantones/metabolismo
16.
J Plant Physiol ; 246-247: 153137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32112956

RESUMEN

NH4+ is not only the primary nitrogen for rice, a well-known NH4+ specialist, but is also the chief limiting factor for its production. Limiting NH4+ triggers a series of physiological and biochemical responses that help rice optimise its nitrogen acquisition. However, the dynamic nature and spatial distribution of the adjustments at the whole plant level during this response are still unknown. Here, nitrogen-starved rice seedlings were treated with 0.1 mM (NH4)2SO4 for 4 or 12 h, and then the shoots and roots were harvested for RNA-Seq analysis. We identified 138 and 815 differentially expressed genes (DEGs) in shoots, and 597 and 1074 in roots following 4 and 12 h treatment, respectively. Up-regulated DEGs mainly participated in phenylpropanoid, sugar, and amino acid metabolism, which was confirmed by chemical content analysis. The transcription factor OsJAZ9 was the most pronouncedly induced component under low NH4+ in roots, and a significant increase in root growth, NH4+ absorption, amino acid, and sugar metabolism in response to resupplied NH4+ following nitrogen starvation was identified in JAZ9ox (OsJAZ9-overexpressed) and coi1 (OsCOI1-RNAi). Our data provide comprehensive insight into the whole-plant transcriptomic response in terms of metabolic processes and signaling transduction to a low-NH4+ signal, and identify the transcription factor OsJAZ9 and its involvement in the regulation of carbon/nitrogen metabolism as central to the response to low NH4+.


Asunto(s)
Compuestos de Amonio/metabolismo , Nitrógeno/metabolismo , Oryza/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Transducción de Señal , Compuestos de Amonio/administración & dosificación , Perfilación de la Expresión Génica , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Factores de Transcripción
17.
J Exp Bot ; 71(15): 4562-4577, 2020 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-32064504

RESUMEN

Ammonium (NH4+) is one of the principal nitrogen (N) sources in soils, but is typically toxic already at intermediate concentrations. The phytohormone abscisic acid (ABA) plays a pivotal role in responses to environmental stresses. However, the role of ABA under high-NH4+ stress in rice (Oryza sativa L.) is only marginally understood. Here, we report that elevated NH4+ can significantly accelerate tissue ABA accumulation. Mutants with high (Osaba8ox) and low levels of ABA (Osphs3-1) exhibit elevated tolerance or sensitivity to high-NH4+ stress, respectively. Furthermore, ABA can decrease NH4+-induced oxidative damage and tissue NH4+ accumulation by enhancing antioxidant and glutamine synthetase (GS)/glutamate synthetasae (GOGAT) enzyme activities. Using RNA sequencing and quantitative real-time PCR approaches, we ascertain that two genes, OsSAPK9 and OsbZIP20, are induced both by high NH4+ and by ABA. Our data indicate that OsSAPK9 interacts with OsbZIP20, and can phosphorylate OsbZIP20 and activate its function. When OsSAPK9 or OsbZIP20 are knocked out in rice, ABA-mediated antioxidant and GS/GOGAT activity enhancement under high-NH4+ stress disappear, and the two mutants are more sensitive to high-NH4+ stress compared with their wild types. Taken together, our results suggest that ABA plays a positive role in regulating the OsSAPK9-OsbZIP20 pathway in rice to increase tolerance to high-NH4+ stress.


Asunto(s)
Compuestos de Amonio , Oryza , Ácido Abscísico , Glutamato-Amoníaco Ligasa/genética , Oryza/genética , Especies Reactivas de Oxígeno
18.
Plant Physiol ; 182(3): 1440-1453, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31937682

RESUMEN

Nitrate is the preferred form of nitrogen for most plants, acting both as a nutrient and a signaling molecule. However, the components and regulatory factors governing nitrate uptake in bread wheat (Triticum aestivum), one of the world's most important crop species, have remained unclear, largely due to the complexity of its hexaploid genome. Here, based on recently released whole-genome information for bread wheat, the high-affinity nitrate transporter2 (NRT2) and the nitrate-assimilation-related (NAR) gene family are characterized. We show that abscisic acid (ABA)- Glc ester deconjugation is stimulated in bread wheat roots by nitrate resupply following nitrate withdrawal, leading to enhanced root-tissue ABA accumulation, and that this enhancement, in turn, affects the expression of root-type NRT2/NAR genes. TaANR1 is shown to regulate nitrate-mediated ABA accumulation by directly activating TaBG1, while TaWabi5 is involved in ABA-mediated NO3 - induction of NRT2/NAR genes. Building on previous evidence establishing ABA involvement in the developmental response to high-nitrate stress, our study suggests that ABA also contributes to the optimization of nitrate uptake by regulating the expression of NRT2/NAR genes under limited nitrate supply, offering a new target for improvement of nitrate absorption in crops.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo
19.
J Exp Bot ; 70(4): 1375-1388, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30689938

RESUMEN

Ammonium (NH4+) toxicity inhibits shoot growth in Arabidopsis, but the underlying mechanisms remain poorly characterized. Here, we show that a novel Arabidopsis mutant, ammonium tolerance 1 (amot1), exhibits enhanced shoot growth tolerance to NH4+. Molecular cloning revealed that amot1 is a new allele of EIN3, a key regulator of ethylene responses. The amot1 mutant and the allelic ein3-1 mutants show greater NH4+ tolerance than the wild type. Moreover, transgenic plants overexpressing EIN3 (EIN3ox) are more sensitive to NH4+ toxicity The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) increases shoot sensitivity to NH4+, whereas the ethylene perception inhibitor Ag+ decreases sensitivity. NH4+ induces ACC and ethylene accumulation. Furthermore, ethylene-insensitive mutants such as etr1-3 and ein3eil1 display enhanced NH4+ tolerance. In contrast, the ethylene overproduction mutant eto1-1 exhibits decreased ammonium tolerance. AMOT1/EIN3 positively regulates shoot ROS accumulation, leading to oxidative stress under NH4+ stress, a trait that may be related to increased expression of peroxidase-encoding genes. These findings demonstrate the role of AMOT1/EIN3 in NH4+ tolerance and confirm the strong link between NH4+ toxicity symptoms and the accumulation of hydrogen peroxide.


Asunto(s)
Compuestos de Amonio/toxicidad , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo
20.
Tree Physiol ; 39(4): 628-640, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30566674

RESUMEN

Tamarix ramosissima Ledeb., a major host plant for the parasitic angiosperm Cistanche tubulosa, and known for its unique drought tolerance, has significant ecological and economic benefits. However, the mechanisms of nitrogen acquisition by the T. ramosissima root system under drought have remained uncharacterized. Here, uptake of nitrate (NO3-) in various regions of the root system was measured in T. ramosissima using Non-invasive Micro-test Technology at the cellular level, and using a 15NO3--enrichment technique at the whole-root level. These results were compared with responses in the model system cotton (Gossypium hirsutum L.). Tamarix ramosissima had lower net NO3- influx and a significantly lower Km (the apparent Michalis-Menten constant; 8.5 µM) for NO3- uptake than cotton under normal conditions. Upon simulated drought conditions, using polyethylene glycol (PEG), NO3- flux in cotton switched from net influx to net efflux, with a substantive peak in the white zone (WZ) of the root. There were no significant NO3- influx signals observed in the WZ of T. ramosissima under control conditions, whereas PEG treatment significantly enhanced NO3- influx in the WZ of T. ramosissima. The effect of PEG application on NO3- fluxes was highly localized, and the increase in net NO3- influx in response to PEG stimulation was also found in C. tubulosa-inoculated T. ramosissima. Consistently, root nitrogen (N) content and root biomass were higher in T. ramosissima than in cotton under PEG treatment. Our study provides insights into NO3- uptake and the influence of C. tubulosa inoculation in T. ramosissima roots during acclimation to PEG-induced drought stress and provides guidelines for silvicultural practice and for breeding of T. ramosissima under coupled conditions of soil drought and N deficiency.


Asunto(s)
Gossypium/fisiología , Nitratos/metabolismo , Nitrógeno/metabolismo , Estrés Fisiológico , Tamaricaceae/fisiología , Transporte Biológico , Sequías , Raíces de Plantas/fisiología , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...