Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
Electron. j. biotechnol ; 30: 83-87, nov. 2017. graf, tab
Artículo en Inglés | LILACS | ID: biblio-1021898

RESUMEN

Background: ß-Glucosidase assay is performed with purified or semipurified enzymes extracted from cell lysis. However, in screening studies, to find bacteria with ß-glucosidase activity among many tested bacteria, a fast method without cell lysis is desirable. In that objective, we report an in vivo ß-glucosidase assay as a fast method to find a ß-glucosidase producer strain. Results: The method consists in growing the strains for testing in a medium supplemented with the artificial substrate p-nitrophenyl-ß-glucopyranoside (pNPG). The presence of ß-glucosidases converts the substrate to p-nitrophenol (pNP), a molecule that can be easily measured in the supernatant spectrophotometrically at 405 nm. The assay was evaluated using two Bifidobacterium strains: Bifidobacterium longum B7254 strain that lacks ß-glucosidase activity and Bifidobacterium pseudocatenulatum B7003 strain that shows ß-glucosidase activity. The addition of sodium carbonate during pNP measurement increases the sensitivity of pNP detection and avoids the masking of absorbance by the culture medium. Furthermore, we show that pNP is a stable enzymatic product, not metabolized by bacteria, but with an inhibitory effect on cell growth. The ß-glucosidase activity was measured as units of enzyme per gram per minute per dry cell weight. This method also allowed the identification of Lactobacillus strains with higher ß-glucosidase activity among several lactobacillus species. Conclusion: This in vivo ß-glucosidase assay can be used as an enzymatic test on living cells without cell disruption. The method is simple, quantitative, and recommended, especially in studies screening for bacteria not only with ß-glucosidase activity but also with high ß-glucosidase activity.


Asunto(s)
Bifidobacterium/aislamiento & purificación , Bifidobacterium/enzimología , beta-Glucosidasa/metabolismo , Bifidobacterium/metabolismo , Nitrofenilgalactósidos , Pruebas de Enzimas , Bifidobacterium longum/aislamiento & purificación , Bifidobacterium longum/enzimología , Bifidobacterium pseudocatenulatum/aislamiento & purificación , Bifidobacterium pseudocatenulatum/enzimología , Lactobacillus/aislamiento & purificación , Lactobacillus/enzimología , Lactobacillus/metabolismo , Nitrofenoles
2.
EPMA J ; 6(1): 13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26110044

RESUMEN

BACKGROUND: Probiotics have great potential to contribute to development of healthy dietary regimes, preventive care, and an integrated approach to immunity-related disease management. The bacterial wall is a dynamic entity, depending on many components and playing an essential role in modulating immune response. The impact of cell wall elasticity on the beneficial effects of probiotic strains has not been sufficiently studied. The aim was to investigate the effect of lactic acid bacteria (LAB) and bifidobacteria strains on phagocytic system cells (macrophages) as related to bacterial wall elasticity, estimated using atomic force microscopy (AFM). METHODS: We conducted studies on Balb/c line mice 18-20 g in weight using lyophilized strains of LAB-Lactobacillus acidophilus IMV B-7279, Lactobacillus casei IMV B-7280, Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281, and bifidobacteria-Bifidobacterium animalis VKL and Bifidobacterium animalis VKB. We cultivated the macrophages obtained from the peritoneal cavity of mice individually with the strains of LAB and bifidobacteria and evaluated their effect on macrophages, oxygen-dependent bactericidal activity, nitric oxide production, and immunoregulatory cytokines. We used AFM scanning to estimate bacterial cell wall elasticity. RESULTS: All strains had a stimulating effect on the functional activity of macrophages and ability to produce NO/NO2 in vitro. Lactobacilli strains increased the production of IL-12 and IFN-γ in vitro. The AFM demonstrated different cell wall elasticity levels in various strains of LAB and bifidobacteria. The rigidity of the cell walls among lactobacilli was distributed as follows: Lactobacillus acidophilus IMV B-7279 > Lactobacillus casei IMV B-7280 > Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281; among the strains of bifidobacteria: B. animalis VKB > B. animalis VKL. Probiotic strain survival in the macrophages depended on the bacterial cell wall elasticity and on the time of their joint cultivation. CONCLUSION: LAB and bifidobacteria strains stimulate immune-modulatory cytokines and active oxygen and nitrogen oxide compound production in macrophages. Strains with a more elastic cell wall according to AFM data demonstrated higher resistance to intracellular digestion in macrophages and higher level of their activation. AFM might be considered as a fast and accurate method to assess parameters of probiotic strain cell wall to predict their immune-modulatory properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...