Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Planta ; 254(2): 35, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34292405

RESUMEN

MAIN CONCLUSION: Accumulation patterns and gene regulatory networks of sugars and cucurbitacins and related primary and secondary metabolites during cultivated watermelon 'Cheng Lan' and wild watermelon 'PI 632,751' fruit development were identified. Metabolites are the end products of cellular regulatory processes and play important roles in fruit taste formation. However, comprehensive studies on the accumulation patterns of watermelon fruit metabolites and transcriptional regulatory networks are still scarce. In this study, 451 annotated metabolites were identified at four key fruit developmental stages in wild watermelon 'PI 632,751' and modern cultivated watermelon 'Cheng Lan'. Interestingly, 11 sugars and 25 major primary metabolites were mainly accumulated in 'Cheng Lan' during fruit development, which are considered to be the potential metabolites beneficial to the formation of watermelon taste. Cucurbitacins and the main flavonoids were mainly specifically accumulated in 'PI 632,751', not being considered to be responsible for the taste. Moreover, forty-seven genes involved in carbohydrate metabolism, glycolysis, and TCA cycle were highly expressed in 'Cheng Lan', which was positively correlated with the accumulation of major primary metabolites. Alternatively, seven UDP-glycosyltransferase genes are closely related to the glycosylation of cucurbitacins through co-expression analysis. Our findings established a global map of metabolite accumulation and gene regulation during fruit development in wild and cultivated watermelons and provided valuable information on taste formation in watermelon fruit.


Asunto(s)
Citrullus , Citrullus/genética , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Metaboloma , Gusto , Transcriptoma/genética
2.
Front Plant Sci ; 12: 629361, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054886

RESUMEN

Metabolites have been reported as the main factor that influences the fruit flavor of watermelon. But the comprehensive study on the dynamics of metabolites during the development of watermelon fruit is not up-to-date. In this study, metabolome and transcriptome datasets of 'Crimson' watermelon fruit at four key developmental stages were generated. A total of 517 metabolites were detected by ultrahigh-performance liquid chromatography-electrospray ionization-tandem mass spectrometry and gas chromatography-solid-phase microextraction-mass spectrometry. Meanwhile, by K-means clustering analysis, the total differentially expressed genes were clustered in six classes. Integrating transcriptome and metabolome data revealed similar expression trends of sugars and genes involved in the glycolytic pathway, providing molecular insights into the formation of taste during fruit development. Furthermore, through coexpression analysis, we identified five differentially expressed ADH (alcohol dehydrogenase) genes (Cla97C01G013600, Cla97C05G089700, Cla97C01G001290, Cla97C05G095170, and Cla97C06G118330), which were found to be closely related to C9 alcohols/aldehydes, providing information for the formation of fruit aroma. Our findings establish a metabolic profile during watermelon fruit development and provide insights into flavor formation.

3.
BMC Plant Biol ; 21(1): 203, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33910512

RESUMEN

BACKGROUND: Fruit flesh color in watermelon (Citrullus lanatus) is a great index for evaluating the appearance quality and a key contributor influencing consumers' preferences. But the molecular mechanism of this intricate trait remains largely unknown. Here, the carotenoids and transcriptome dynamics during the fruit development of cultivated watermelon with five different flesh colors were analyzed. RESULTS: A total of 13 carotenoids and 16,781 differentially expressed genes (DEGs), including 1295 transcription factors (TFs), were detected in five watermelon genotypes during the fruit development. The comprehensive accumulation patterns of carotenoids were closely related to flesh color. A number of potential structural genes and transcription factors were found to be associated with the carotenoid biosynthesis pathway using comparative transcriptome analysis. The differentially expressed genes were divided into six subclusters and distributed in different GO terms and metabolic pathways. Furthermore, we performed weighted gene co-expression network analysis and predicted the hub genes in six main modules determining carotenoid contents. Cla018406 (a chaperone protein dnaJ-like protein) may be a candidate gene for ß-carotene accumulation and highly expressed in orange flesh-colored fruit. Cla007686 (a zinc finger CCCH domain-containing protein) was highly expressed in the red flesh-colored watermelon, maybe a key regulator of lycopene accumulation. Cla003760 (membrane protein) and Cla021635 (photosystem I reaction center subunit II) were predicted to be the hub genes and may play an essential role in yellow flesh formation. CONCLUSIONS: The composition and contents of carotenoids in five watermelon genotypes vary greatly. A series of candidate genes were revealed through combined analysis of metabolites and transcriptome. These results provide an important data resource for dissecting candidate genes and molecular basis governing flesh color formation in watermelon fruit.


Asunto(s)
Carotenoides/metabolismo , Citrullus/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Transcriptoma , Citrullus/crecimiento & desarrollo , Citrullus/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Genotipo , Licopeno/metabolismo , Redes y Vías Metabólicas , Fenotipo , Pigmentación , Factores de Transcripción/genética , beta Caroteno/metabolismo
4.
Metabolites ; 11(2)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525435

RESUMEN

Watermelon (Citrullus lanatus) is one of the most nutritional fruits that is widely distributed in the whole world. The nutritional compositions are mainly influenced by the genotype and environment. However, the metabolomics of different domestication status and different flesh colors watermelon types is not fully understood. In this study, we reported an extensive assessment of metabolomic divergence in the fruit flesh among Citrullus sp. and within Citrullus sp. We demonstrate that metabolic profiling was significantly different between the wild and cultivated watermelons, the apigenin 6-C-glucoside, luteolin 6-C-glucoside, chrysoeriol C-hexoside, naringenin C-hexoside, C-pentosyl-chrysoeriol O-hexoside, and sucrose are the main divergent metabolites. Correlation analysis results revealed that flavonoids were present in one tight metabolite cluster. The main divergent metabolites in different flesh-colored cultivated watermelon fruits are p-coumaric acid, 2,3-dihydroflavone, catechin, N-(3-indolylacetyl)-l-alanine, 3,4-dihydroxycinnamic acid, and pelargonidin o-hexoside. A total of 431 differentially accumulated metabolites were identified from pairwise comparative analyses. C. lanatus edible-seed watermelon (cultivars) and C. mucosospermus (wild) have similar fruit metabolic profiles and phenotypic traits, indicating that edible-seed watermelon may be a relative of wild species and a relatively primitive differentiation type of cultivated watermelon. Our data provide extensive knowledge for metabolomics-based watermelon improvement of Citrullus fruits meet their enhanced nutritive properties or upgraded germplasm utility values.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...