Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 362: 114339, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36717013

RESUMEN

Large scale studies in populations of European and Han Chinese ancestry found a series of rare gain-of-function microduplications in VIPR2, encoding VPAC2, a receptor that binds vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide with high affinity, that were associated with an up to 13-fold increased risk for schizophrenia. To address how VPAC2 receptor overactivity might affect brain development, we used a well-characterized Nestin-Cre mouse strain and a knock-in approach to overexpress human VPAC2 in the central nervous system. Mice that overexpressed VPAC2 were found to exhibit a significant reduction in brain weight. Magnetic resonance imaging analysis confirmed a decrease in brain size, a specific reduction in the hippocampus grey matter volume and a paradoxical increase in whole-brain white matter volume. Sex-specific changes in behavior such as impaired prepulse inhibition and contextual fear memory were observed in VPAC2 overexpressing mice. The data indicate that the VPAC2 receptor may play a critical role in brain morphogenesis and suggest that overactive VPAC2 signaling during development plays a mechanistic role in some forms of schizophrenia.


Asunto(s)
Receptores de Tipo II del Péptido Intestinal Vasoactivo , Sustancia Blanca , Masculino , Humanos , Femenino , Ratones , Animales , Receptores de Tipo II del Péptido Intestinal Vasoactivo/metabolismo , Sustancia Blanca/metabolismo , Péptido Intestinal Vasoactivo/química , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Inhibición Prepulso
2.
Neurobiol Dis ; 160: 105524, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34610465

RESUMEN

Chronic inflammation drives synaptic loss in multiple sclerosis (MS) and is also commonly observed in other neurodegenerative diseases. Clinically approved treatments for MS provide symptomatic relief but fail to halt neurodegeneration and neurological decline. Studies in animal disease models have demonstrated that the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP, ADCYAP1) exhibits anti-inflammatory, neuroprotective and regenerative properties. Anti-inflammatory actions appear to be mediated primarily by two receptors, VPAC1 and VPAC2, which also bind vasoactive intestinal peptide (VIP). Pharmacological experiments indicate that another receptor, PAC1 (ADCYAP1R1), which is highly selective for PACAP, provides protection to neurons, although genetic evidence and other mechanistic information is lacking. To determine if PAC1 receptors protect neurons in a cell-autonomous manner, we used adeno-associated virus (AAV2) to deliver Cre recombinase to the retina of mice harboring floxed PAC1 alleles. Mice were then subjected to chronic experimental autoimmune encephalomyelitis (EAE), a disease model that recapitulates major clinical and pathological features of MS and associated optic neuritis. Unexpectedly, deletion of PAC1 in naïve mice resulted in a deficit of retinal ganglionic neurons (RGNs) and their dendrites, suggesting a homeostatic role of PAC1. Moreover, deletion of PAC1 resulted in increased EAE-induced loss of a subpopulation of RGNs purported to be vulnerable in animal models of glaucoma. Increased axonal pathology and increased secondary presence of microglia/macrophages was also prominently seen in the optic nerve. These findings demonstrate that neuronal PAC1 receptors play a homeostatic role in protecting RGNs and directly protects neurons and their axons against neuroinflammatory challenge. SIGNIFICANCE STATEMENT: Chronic inflammation is a major component of neurodegenerative diseases and plays a central role in multiple sclerosis (MS). Current treatments for MS do not prevent neurodegeneration and/or neurological decline. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to have anti-inflammatory, neuroprotective and regenerative properties but the cell type- and receptor-specific mechanisms are not clear. To test whether the protective effects of PACAP are direct on the PAC1 receptor subtype on neurons, we delete PAC1 receptors from neurons and investigate neuropathologigical changes in an animal model of MS. The findings demonstrate that PAC1 receptors on neurons play a homeostatic role in maintaining neuron health and can directly protect neurons and their axons during neuroinflammatory disease.


Asunto(s)
Axones/metabolismo , Muerte Celular/fisiología , Esclerosis Múltiple/metabolismo , Neuritis Óptica/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Neuronas Retinianas/metabolismo , Animales , Axones/patología , Encéfalo/metabolismo , Encéfalo/patología , Ratones , Ratones Noqueados , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Neuritis Óptica/genética , Neuritis Óptica/patología , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética
3.
J Vitreoretin Dis ; 5(1): 81-86, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35663927

RESUMEN

Purpose: This report aims to characterize ocular changes in a case of ocular siderosis with iron toxicity using multimodal imaging and electroretinography. Methods: A 34-year-old woman presented with ocular siderosis of the left eye following penetrating injury with an iron-containing foreign body. The patient's uncorrected visual acuities were 20/60 and 20/150 in the right and left eye, respectively, with abnormal pupillary function and presence of a cataract in the left eye. She underwent successful intraocular foreign body removal and cataract surgery with no postoperative complications. Cone contrast threshold (CCT), full-field electroretinogram, spectral-domain optical coherence tomography (OCT), and OCT angiography (OCTA) were used to characterize ocular alterations preoperatively and postoperatively. Results: CCT color vision testing showed abnormal color vision, and OCTA revealed increased vascular flow density associated with the foreign body. Conclusions: CCT color vision testing, OCTA, OCT, and full-field electroretinogram can characterize retinal changes in cases of ocular siderosis.

4.
J Mol Neurosci ; 68(3): 439-451, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30058008

RESUMEN

The sympathetic nervous system (SNS) serves to maintain homeostasis of vital organ systems throughout the body, and its dysfunction plays a major role in human disease. The SNS also links the central nervous system to the immune system during different types of stress via innervation of the lymph nodes, spleen, thymus, and bone marrow. Previous studies have shown that pituitary adenylate cyclase-activating polypeptide (PACAP, gene name adcyap1) exhibits anti-inflammatory properties in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Because PACAP is known to regulate SNS function, we hypothesized that part of the immunoprotective action of PACAP is due to its neuromodulatory effects on sympathetic neurons. To examine this, we used an inducible, targeted approach to conditionally disrupt not only the PACAP-preferring PAC1 receptor gene (adcyap1r1) in dopamine ß-hydroxylase-expressing cells, which includes postganglionic sympathetic neurons, but also catecholaminergic neurons in the brain and adrenomedullary chromaffin cells. In contrast to our previous EAE studies using PACAP global knockout mice which developed severe and prolonged EAE, we found that mice with conditional loss of PAC1 receptors in catecholaminergic cells developed a delayed time course of EAE with reduced helper T cell type 1 (Th1) and Th17 and enhanced Th2 cell polarization. At later time points, similar to mice with global PACAP loss, mice with conditional loss of PAC1 exhibited more severe clinical disease than controls. The latter was associated with a reduction in the abundance of thymic regulatory T cells (Tregs). These studies indicate that PAC1 receptor signaling acts in catecholaminergic cells in a time-dependent manner. At early stages of disease development, it enhances the ability of the SNS to polarize the Th response towards a more inflammatory state. Then, after disease is established, it enhances the ability of the SNS to dampen the inflammatory response via Tregs. The lack of concordance in results between global PACAP KO mice and mice with the PAC1 deletion targeted to catecholaminergic cells during early EAE may be explained by the fact that PACAP acts to regulate inflammation via multiple receptor subtypes and multiple targets, including inflammatory cells.


Asunto(s)
Células Cromafines/metabolismo , Neuronas Dopaminérgicas/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Animales , Encefalomielitis Autoinmune Experimental/inmunología , Ratones , Ratones Endogámicos C57BL , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/genética , Transducción de Señal , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Reguladores/inmunología
5.
J Mol Neurosci ; 68(3): 452, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30362069

RESUMEN

The original version of this article unfortunately contained mistakes. The captured article title and corresponding author were incorrect.

6.
J Comp Neurol ; 524(18): 3827-3848, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27197019

RESUMEN

Pituitary adenylate cyclase-activating polypeptide (PACAP, gene name Adcyap1) regulates a wide variety of neurological and physiological functions, including metabolism and cognition, and plays roles in of multiple forms of stress. Because of its preferential expression in nerve fibers, it has often been difficult to trace and identify the endogenous sources of the peptide in specific populations of neurons. Here, we introduce a transgenic mouse line that harbors in its genome a bacterial artificial chromosome containing an enhanced green fluorescent protein (EGFP) expression cassette inserted upstream of the PACAP ATG translation initiation codon. Analysis of expression in brain sections of these mice using a GFP antibody reveals EGFP expression in distinct neuronal perikarya and dendritic arbors in several major brain regions previously reported to express PACAP from using a variety of approaches, including radioimmunoassay, in situ hybridization, and immunohistochemistry with and without colchicine. EGFP expression in neuronal perikarya was modulated in a manner similar to PACAP gene expression in motor neurons after peripheral axotomy in the ipsilateral facial motor nucleus in the brainstem, providing an example in which the transgene undergoes proper regulation in vivo. These mice and the high-resolution map obtained are expected to be useful in understanding the anatomical patterns of PACAP expression and its plasticity in the mouse. J. Comp. Neurol. 524:3827-3848, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Ratones Transgénicos , Modelos Animales , Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Animales , Axotomía , Encéfalo/citología , Encéfalo/metabolismo , Traumatismos del Nervio Facial/metabolismo , Traumatismos del Nervio Facial/patología , Perfilación de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Inmunohistoquímica , Masculino , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Médula Espinal/citología , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...