Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 273(Pt 1): 132819, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38830498

RESUMEN

The avascular nature of hyaline cartilage results in limited spontaneous self-repair and regenerative capabilities when damaged. Recent advances in three-dimensional bioprinting have enabled the precise dispensing of cell-laden biomaterials, commonly referred to as 'bioinks', which are emerging as promising solutions for tissue regeneration. An effective bioink for cartilage tissue engineering needs to create a micro-environment that promotes cell differentiation and supports neocartilage tissue formation. In this study, we introduced an innovative bioink composed of photocurable acrylated type I collagen (COLMA), thiol-modified hyaluronic acid (THA), and poly(ethylene glycol) diacrylate (PEGDA) for 3D bioprinting cartilage grafts using human nasal chondrocytes. Both collagen and hyaluronic acid, being key components of the extracellular matrix (ECM) in the human body, provide essential biological cues for tissue regeneration. We evaluated three formulations - COLMA, COLMA+THA, and COLMA+THA+PEGDA - for their printability, cell viability, structural integrity, and capabilities in forming cartilage-like ECM. The addition of THA and PEGDA significantly enhanced these properties, showcasing the potential of this bioink in advancing applications in cartilage repair and reconstructive surgery.


Asunto(s)
Ácido Hialurónico , Ingeniería de Tejidos , Andamios del Tejido , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Ingeniería de Tejidos/métodos , Humanos , Andamios del Tejido/química , Condrocitos/citología , Condrocitos/efectos de los fármacos , Polietilenglicoles/química , Bioimpresión/métodos , Colágeno/química , Impresión Tridimensional , Cartílago/citología , Matriz Extracelular/química , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Tinta
2.
Med Biol Eng Comput ; 62(5): 1395-1407, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38194185

RESUMEN

An improved understanding of contact mechanics in the ankle joint is paramount for implant design and ankle disorder treatment. However, existing models generally simplify the ankle joint as a revolute joint that cannot predict contact characteristics. The current study aimed to develop a novel musculoskeletal ankle joint model that can predict contact in the ankle joint, together with muscle and joint reaction forces. We modelled the ankle joint as a multi-axial joint and simulated contact mechanics between the tibia, fibula and talus bones in OpenSim. The developed model was validated with results from experimental studies through passive stiffness and contact. Through this, we found a similar ankle moment-rotation relationship and contact pattern between our study and experimental studies. Next, the musculoskeletal ankle joint model was incorporated into a lower body model to simulate gait. The ankle joint contact characteristics, kinematics, and muscle forces were predicted and compared to the literature. Our results revealed a comparable peak contact force and the same muscle activation patterns in four major muscles. Good agreement was also found in ankle dorsi/plantar-flexion and inversion/eversion. Thus, the developed model was able to accurately model the ankle joint and can be used to predict contact characteristics in gait.


Asunto(s)
Articulación del Tobillo , Tobillo , Articulación del Tobillo/fisiología , Marcha/fisiología , Extremidad Inferior , Músculos , Fenómenos Biomecánicos
3.
JBJS Rev ; 9(6)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34101700

RESUMEN

¼: The blood supply to the talus is vulnerable to damage, making the talus susceptible to osteonecrosis, with limited treatment options. ¼: Talar bone replacement has been investigated as a treatment option to preserve ankle function and maintain limb length. ¼: Successful talar bone replacements have been performed for the past >35 years, with variations in design, methods of fixation, materials, and manufacturing techniques. ¼: The designs of talar prostheses range from custom-made partial (talar body) or total prostheses to prefabricated universal (non-custom-made) prostheses. ¼: Total talar prostheses have been demonstrated to function better than partial talar prostheses; however, there is a need for long-term studies regarding custom-made total talar prostheses and prefabricated universal talar prostheses in order to determine their long-term effectiveness.


Asunto(s)
Miembros Artificiales , Osteonecrosis , Astrágalo , Articulación del Tobillo/cirugía , Humanos , Osteonecrosis/cirugía , Astrágalo/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...