Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gene ; 247(1-2): 53-61, 2000 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-10773444

RESUMEN

UAS-less reporter plasmids are widespread and powerful tools for the identification and analysis of binding sites for transcriptional activators. The common reporter plasmids for the yeast Saccharomyces cerevisiae are multicopy (2mu) vectors with the CYC1 core promoter upstream of the lacZ gene. Insertion of putative or known activator binding sites upstream of the core promoter puts lacZ (beta-galactosidase) expression under the control of the corresponding activator. Although these constructs have proved to work well for most purposes, they have certain limitations: (1) they give significant and carbon-source-dependent lacZ background expression; (2) unlike most other yeast promoters, the CYC1 upstream region has a partially open chromatin structure with an accessible TATA box; (3) they use only a single, moderately sensitive reporter; and (4) the use of multicopy vectors can result in activator titration. Here, we introduce novel reporter plasmids based on the yeast MEL1 (alpha-galactosidase) gene that can overcome all of these limitations. It is also shown that background expression is due to fortuitous activator binding sites within the plasmid backbones that are insufficiently shielded from the core promoters in the common CYC1 reporter plasmids.


Asunto(s)
Citocromos c , Genes Reporteros/genética , Plásmidos/genética , Proteínas de Saccharomyces cerevisiae , Sitios de Unión , Grupo Citocromo c/genética , Galactosa/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/farmacología , Glicerol/farmacología , Operón Lac/genética , Maltosa/farmacología , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Sensibilidad y Especificidad , Transactivadores/metabolismo , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo , beta-Galactosidasa/efectos de los fármacos , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
2.
J Biol Chem ; 275(23): 17894-9, 2000 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-10749878

RESUMEN

Wnt signaling involves inhibition of glycogen synthase kinase-3beta (GSK-3beta) and elevation of cytoplasmic beta-catenin. This pathway is essential during embryonic development and oncogenesis. Previous studies on both Xenopus and mammalian cells indicate that lithium mimics Wnt signaling by inactivating GSK-3beta. Here we show that serum enhances accumulation of cytoplasmic beta-catenin induced by lithium in both 293 and C57MG cell lines and that growth factors are responsible for this enhancing activity. Growth factors mediate this effect through activation of protein kinase C (PKC), not through Ras or phosphatidylinositol 3-kinase. In addition, Wnt-induced accumulation of cytoplasmic beta-catenin is partially inhibited by PKC inhibitors and by chronic treatment of cells with phorbol ester. Both calphostin C, a PKC inhibitor, and a dominant negative PKC exhibit partial inhibition on Wnt-mediated transcriptional activation. We therefore propose that Wnt signaling to beta-catenin consists of two interactive components: one involves inhibition of GSK-3beta and is mimicked by lithium, and the other involves PKC and serves to augment the effects of GSK-3beta inhibition.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/antagonistas & inhibidores , Proteínas del Citoesqueleto/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Transactivadores , Proteínas de Pez Cebra , Animales , Línea Celular , Medios de Cultivo , Activación Enzimática , Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/fisiología , Genes Reporteros , Glucógeno Sintasa Quinasa 3 , Glucógeno Sintasa Quinasas , Humanos , Litio/farmacología , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Mitógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Activación Transcripcional/efectos de los fármacos , Transfección , Proteínas Wnt , beta Catenina
3.
Curr Biol ; 8(8): 452-8, 1998 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-9550700

RESUMEN

BACKGROUND: The promoter regions of most eukaryotic genes contain binding sites for more than one transcriptional activator and these activators often bind cooperatively to promoters. The most common type of cooperativity is supported by direct protein-protein interactions. Recent studies have shown that proteins that do not specifically interact with one another can bind cooperatively to chromatin in vitro. probably by the localized destabilization of nucleosome structure by one factor, facilitating binding of another to a nearby site. This mechanism does not require that the transcription factors have activation domains. We have examined whether this phenomenon occurs in vivo. RESULTS: Unrelated non-interacting proteins can bind DNA cooperatively in yeast cells; this cooperative binding can contribute significantly to transcriptional activation, does not require that both factors have activation domains and is only operative over relatively short distances. In addition to this 'short-range' mechanism, unrelated non-interacting proteins can bind cooperatively to sites separated by hundreds of base pairs, so long as both have potent activation domains. CONCLUSION: Cooperative binding of transcription factors in vivo can occur by several mechanisms, some of which do not require direct protein-protein interactions and which cannot be detected in vitro using naked DNA templates. These findings must be taken into account when evaluating mechanisms for synergistic transcriptional activation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citocromos c , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Serina Endopeptidasas/metabolismo , Factores de Transcripción , Activación Transcripcional/genética , Proteínas Bacterianas/genética , Grupo Citocromo c/genética , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Proteína Vmw65 de Virus del Herpes Simple/genética , Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Operón Lac/genética , Modelos Genéticos , Regiones Operadoras Genéticas/genética , Plásmidos/genética , Plásmidos/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Recombinantes de Fusión , Saccharomyces cerevisiae/genética , Serina Endopeptidasas/genética , alfa-Galactosidasa/genética
4.
Mol Cell Biol ; 17(5): 2538-49, 1997 May.
Artículo en Inglés | MEDLINE | ID: mdl-9111323

RESUMEN

The transcriptional activation function of the Saccharomyces cerevisiae activator Gal4p is known to rely on a DNA binding activity at its amino terminus and an activation domain at its carboxy terminus. Although both domains are required for activation, truncated forms of Gal4p containing only these domains activate poorly in vivo. Also, mutations in an internal conserved region of Gal4p inactivate the protein, suggesting that this internal region has some function critical to the activity of Gal4p. We have addressed the question of what is the minimal form of Gal4 protein that can perform all of its known functions. A form with an internal deletion of the internal conserved domain of Gal4p is transcriptionally inactive, allowing selection for suppressors. All suppressors isolated were intragenic alterations that had further amino acid deletions (miniGAL4s). Characterization of the most active miniGal4 proteins demonstrated that they possess all of the known functions of full-length Gal4p, including glucose repression, galactose induction, response to deletions of gal11 or gal6, and interactions with other proteins such as Ga180p, Sug1p, and TATA binding protein. Analysis of the transcriptional activities, protein levels, and DNA binding abilities of these miniGal4ps and a series of defined internal mutants compared to those of the full-length Gal4p indicates that the DNA binding and activation domains are necessary and sufficient qualitatively for all of these known functions of Gal4p. Our observations imply that the internal region of Gal4 protein may serve as a spacer to augment transcription and/or may be involved in intramolecular or Gal4p-Gal4p interactions.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Transducción de Señal , Factores de Transcripción/metabolismo , Adenosina Trifosfatasas , Cisteína Endopeptidasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Galactosa/metabolismo , Glucosa/farmacología , Cinética , Complejo Mediador , Mutagénesis , Complejo de la Endopetidasa Proteasomal , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae , Transactivadores/metabolismo , Factores de Transcripción/genética , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA