Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 151(13): 134708, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31594343

RESUMEN

This paper focuses on the kinetics of Cr4+ formation in Cr,Ca:YAG ceramics prepared by solid-state reaction sintering. The kinetics of Cr4+ formation was studied by annealing of Cr,Ca:YAG ceramics in ambient air under different temperatures at different times, resulting in the transformation of Cr3+ to Cr4+. The activation energy (Ea) of Cr3+ oxidation determined by the Jander model was 2.7 ± 0.2 eV, which is in good correlation with the activation energy of innergrain oxygen diffusion in the YAG lattice. It is concluded that Cr3+ to Cr4+ transformation in YAG ceramics is limited by oxygen diffusion through the grain body. It was established that in Cr,Ca:YAG ceramics, the intralattice cation exchange, in which the Cr4+ ions exchange positions with the Al3+ ions, switching from "A" to "D" sites, is faster than Cr3+ to Cr4+ oxidation. In the temperature range of 900-1300 °C, the reaction enthalpy of Al3+/Cr4+ ion exchange between octahedral "A" and tetrahedral "D" lattice sites is close to zero, and this exchange ratio is thermodynamically driven by entropy.

2.
ACS Appl Mater Interfaces ; 9(31): 26143-26150, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28707878

RESUMEN

Nitrogen-doped and undoped ZnO films were grown by thermal atomic layer deposition (ALD) under oxygen-rich conditions. Low-temperature photoluminescence spectra reveal a dominant donor-related emission at 3.36 eV and characteristic acceptor-related emissions at 3.302 and 3.318 eV. Annealing at 800 °C in oxygen atmosphere leads to conversion of conductivity from n- to p-type, which is reflected in photoluminescence spectra. Annealing does not increase any acceptor-related emission in the undoped sample, while in the ZnO:N it leads to a considerable enhancement of the photoluminescence at 3.302 eV. The high resolution cathodoluminescence cross-section images show different spatial distribution of the donor-related and the acceptor-related emissions, which complementarily contribute to the overall luminescence of the annealed ZnO:N material. Similar area of both emissions indicates that the acceptor luminescence comes neither from the grain boundaries nor from stacking faults. Moreover, in ZnO:N the acceptor-emission regions are located along the columns of growth, which shows a perspective to achieve a ZnO:N material with homogeneous acceptor conductivity at least at the micrometer scale.

3.
Nanotechnology ; 24(3): 035703, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23262581

RESUMEN

An arrangement of self-assembled GaN nanowires (NWs) grown by plasma-assisted molecular beam epitaxy on a Si(111) substrate is studied as a function of the temperature at which the substrate is nitridized before GaN growth. We show that the NWs grow with the c-axis perpendicular to the substrate surface independently of nitridation temperature with only a slight improvement in tilt coherency for high nitridation temperatures. A much larger influence of the substrate nitridation process on the in-plane arrangement of NWs is found. For high (850 °C) and medium (450 °C) nitridation temperatures angular twist distributions are relatively narrow and NWs are epitaxially aligned to the substrate in the same way as commonly observed in GaN on Si(111) planar layers with an AlN buffer. However, if the substrate is nitridized at low temperature (~150 °C) the epitaxial relationship with the substrate is lost and an almost random in-plane orientation of GaN NWs is observed. These results are correlated with a microstructure of silicon nitride film created on the substrate as the result of the nitridation procedure.

4.
J Microsc ; 237(3): 337-40, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20500392

RESUMEN

CdTe/ZnTe axial nanowires were successfully fabricated by molecular beam epitaxy with the use of Au nano-catalysts and vapour-liquid-solid growth mechanism. Nanowires had zinc-blende structure with numerous stacking faults in the bottom ZnTe part and near perfect crystalline structure in the top CdTe part. Energy dispersive X-ray spectroscopy (EDXS) and lattice fringe spacing analysis revealed nonabrupt nature of hetero-interface, whose width was estimated to be 50-70 nm for the nanowires having a diameter in the range from 40 to 50 nm.

5.
J Microsc ; 236(2): 115-8, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19903235

RESUMEN

The structure of GaMnAs nanowires (NW) with nominal Mn concentration of up to 7 at% was investigated by transmission electron microscopy. The (Ga,Mn)As NW were grown on epiready GaAs(001) n-type wafers by molecular beam epitaxy. The crystal structure of the NW was determined to be zinc-blende. NW with Mn concentrations lower than 5 at% grow along the 111 direction. NW with higher Mn concentrations grow along the 110 direction and reveal a branching structure. The main nanowire and branches grow along the 110 directions belonging to only one {111} plane.

6.
Micron ; 40(1): 122-5, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18395456

RESUMEN

Transmission electron microscopy (TEM), atomic force microscopy (AFM), and EDX methods were used to study morphology and chemical composition of SiGe/Si(001) islands grown at 700 degrees C and covered at 550 degrees C and 700 degrees C by Si layers of different thickness. The samples were grown in ultra high vacuum chemical vapor deposition process (UHVCVD) controlled with in situ reflection of high-energy electron diffraction (RHEED). The islands transformed from initial pyramid and dome shapes to lens shape for 1.4 nm and 3.7 nm cap layer thickness at 550 degrees C and 700 degrees C, respectively. An increase of lateral to vertical ratio was observed during the transformation. For the higher depositing temperature the ratio was bigger and was increasing continuously with cap layer thickness. Also, with increasing Si cap layer thickness, the Ge concentration was decreasing, which was more observable for higher capping temperature.

7.
Micron ; 40(1): 94-8, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18289864

RESUMEN

Composite films of nano-size nickel grains embedded in a carbonaceous matrix are synthesized by a PVD process of C(60) fullerenes and Ni acetate. The morphology of the nano-composite films is characterized by TEM, selected area electron diffraction, chemical analysis and AFM. Correlations with deposition parameters and typical structure changes are found. The mechanical properties are analyzed by nanoindentation. The load-displacement charts show typical pop-ins correlated with the heterogeneous nano-structure. The depth dependent hardness and indentation modulus vary according to the nano-composite structure and reflect the changes of the mechanical properties in the film.

8.
Nanotechnology ; 19(36): 365606, 2008 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-21828877

RESUMEN

This paper reports on the epitaxial growth of single-crystalline ternary Zn(1-x)Mg(x)Te nanowires covering a broad compositional range of molar fraction 0≤x≤0.75. The nanowires were grown on (100), (110), and (111) GaAs substrates using a vapor-liquid-solid mechanism. Solid source molecular beam epitaxy and an Au-based nanocatalyst were used for these purposes. The composition of nanowires can be adjusted by changing the ratio of Mg to Zn molecular beam fluxes. Electron microscopy images show that the nanowires are smooth and slightly tapered. The diameters of the obtained nanowires are from 30 to 70 nm and their length is around 1 µm. X-ray diffraction analysis and transmission electron microscopy reveal that the nanowires have a zinc-blende structure throughout the whole range of obtained compositions, and have a [Formula: see text] growth axis. The Raman measurements reveal both the expected splitting and shift of phonon lines with increasing Mg content, thus proving the substitutional incorporation of Mg into metallic sites of the ZnTe lattice.

9.
Nanotechnology ; 18(46): 465707, 2007 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-21730494

RESUMEN

We present transmission electron microscopy (TEM) and x-ray quantitative studies of the indium distribution in In(x)Ga(1-x)N/GaN multiple quantum wells (MQWs) with x = 0.1 and 0.18. The quantum wells were grown by low-pressure metalorganic chemical vapour deposition (LP-MOCVD) on a bulk, dislocation-free, mono-crystalline GaN substrate. By using the quantitative TEM methodology the absolute indium concentration was determined from the 0002 lattice fringe images by the strain measurement coupled with finite element (FE) simulations of surface relaxation of the TEM sample. In the x-ray diffraction (XRD) investigation, a new simulation program was applied to monitor the indium content and lateral composition gradients. We found a very high quality of the multiple quantum wells with lateral indium fluctuations no higher than Δx(L) = 0.025. The individual wells have very similar indium concentration and widths over the whole multiple quantum well (MQW) stack. We also show that the formation of 'false clusters' is not a limiting factor in indium distribution measurements. We interpreted the 'false clusters' as small In-rich islands formed on a sample surface during electron-beam exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA