Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(28): 14570-14582, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38963260

RESUMEN

Although simulation results for gaseous adsorption on a surface of infinite extent, modeled with periodic conditions at the boundaries of the simulation box, agree with experimental data at high temperatures, simulated isotherms at temperatures below the triple point temperature show unphysical substeps because of the compromise of interactions within the box and interactions between the box and its mirror image boxes. This has been alleviated with surfaces of finite dimensions (Loi, Q. K.; Colloids Surf., A 2021, 622, 126690 and Castaño Plaza, O.; Langmuir 2023, 39 (21), 7456-7468) to account for free boundaries at the adsorbate patch on the surface, and the critical parameter of this model substrate is the size of the finite surface. If it is too small, the adsorbate patch does not model the physical reality; however, if it is too large, the computation time is excessive, making the simulation impractical. In this study, we used carbon dioxide/graphite as the model system to explore the effects of finite dimensions on the description of experimental data of Terlain, A.; Larher, Y. Surf. Sci. 1983, 125 (1), 304-311, especially for temperatures below the bulk triple point temperature. With the appropriate choice of graphene size, we derived the 2D triple point and 2D critical point temperatures of the monolayer, and most importantly, for temperatures below the 2D critical point temperature, the adsorption mechanism for the formation of the monolayer is due to the interplay between the boundary growth process and the vacancy filling. The extent of this interplay is found to depend on the fractional coverage of the surface.

2.
Langmuir ; 34(1): 106-114, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29211486

RESUMEN

Adsorption on nanoporous matrices is characterized by a pronounced hysteresis loop in the adsorption isotherm, when the substrate is loaded and unloaded with adsorbate, the origin of which is a matter of immense debate in the literature. In this work, we report a study of argon adsorption at 85 K on nonconnecting nanopores with one end closed to the surrounding where the effects of different pore cross sections fabricated by electron beam lithography (EBL) are investigated. A polymethylmethacrylate (PMMA) resist is deposited on the electrodes of a sensitive quartz crystal microbalance without degradation of the resonance quality factor or the long-term and short-term stabilities of the device even at cryogenic temperatures. Four different pores' cross sections: circular, square, rectangular, and triangular, are produced from EBL, and the isotherms for these pore shapes exhibit pronounced hysteresis loops whose adsorption and desorption branches are nearly vertical and have almost the same slopes. No difference is observed in the hysteresis loops of the isotherms for the pores with triangular and square cross sections, whereas the hysteresis loop for the pore with circular cross sections is much narrower, suggesting that they are more regular than the other pores. All of these observations suggest that the hysteresis behavior resulted mainly from microscopic geometric irregularities present in these porous matrices.

3.
Nanoscale ; 7(6): 2587-96, 2015 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-25578390

RESUMEN

We have studied adsorption in regular, self-ordered alumina pores open at both ends or only at one end. The straight, non-connected pores have diameters ranging from 22 to 83 nm, with a relative dispersion below 1% in the pore size. Adsorption isotherms measured in open pores with a torsional microbalance show pronounced hysteresis loops characterized by nearly vertical and parallel adsorption and desorption branches. Blocking one end of the pores with glue has a strong influence on adsorption, as expected from classical macroscopic arguments. However, the experimental measurements show an unexpectedly rich phenomenology dependent on the pore size. For large pores (Dp ≥ 67 nm), the isotherms for closed end pores present much narrower hysteresis loops whose adsorption and desorption boundaries envelop the desorption branches of the isotherms for the corresponding open pores of the same size. The loop for small closed end pores (Dp = 22 nm) is slightly wider than that for open pores while the adsorption branches coincide. For large pores, in contrast, the desorption branches of pores with the same Dp overlap regardless of the pore opening. These observations are in agreement with our grand canonical Monte Carlo (GCMC) simulations for a cylindrical pore model with constrictions, suggesting that the alumina pores could be modeled using a constricted pore model whose adsorption isotherm depends on the ratio of the constriction size to the pore size (Dc/Dp).

4.
Water Res ; 46(16): 5247-54, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22841594

RESUMEN

Many coal seam gas (CSG) waters contain a sodium ion concentration which is too high relative to calcium and magnesium ions for environment acceptance. Natural zeolites can be used as a cheap and effective method to control sodium adsorption ratio (SAR, which is a measure of the relative preponderance of sodium to calcium and magnesium) due to its high cation exchange capacity. In this study, a natural zeolite from Queensland was examined for its potential to treat CSG water to remove sodium ions to lower SAR and reduce the pH value. The results demonstrate that acid activated zeolite at 30%wt solid ratio can reduce the sodium content from 563.0 to 182.7 ppm; the pH from 8.74 to 6.95; and SAR from 70.3 to 18.5. Based on the results of the batch experiments, the sodium adsorption capacity of the acid-treated zeolite is three times greater than that of the untreated zeolite. Both the untreated and acid-treated zeolite samples were characterized using zeta potential, surface characterization, DTA/TG and particle size distribution in order to explain their adsorption behaviours.


Asunto(s)
Agua Subterránea/química , Minería/métodos , Gas Natural , Sodio/análisis , Contaminantes Químicos del Agua/análisis , Zeolitas/química , Ácidos/química , Adsorción , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Sodio/aislamiento & purificación , Espectrofotometría Atómica , Contaminantes Químicos del Agua/aislamiento & purificación , Difracción de Rayos X
5.
Phys Chem Chem Phys ; 10(8): 1106-13, 2008 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-18270611

RESUMEN

Heats of adsorption and adsorption isotherms of argon, nitrogen and methane on a perfect graphitic surface and a defective graphitic surface are studied with a Grand Canonical Monte Carlo Simulation (GCMC). For the perfect surface, the isosteric heat versus loading shows a typical pattern of adsorption of simple fluids on graphite. Depending on adsorbate, degree of graphitization and temperature, a spike in the heat curve versus loading is observed when the first layer is mostly covered with adsorbate molecules. The heat spike is observed for argon and nitrogen at 77 K while for argon at 87.3 K it is no longer present. These simulation results are consistent with the experimental data of J. Rouquerol, S. Partyka and F. Rouquerol, J. Chem. Soc., Faraday Trans. 1, 1977, 73, 306. In the case of methane we observe heat spikes at low temperatures, 84.5, 92.5 and 104 K. The heat spike shifts to higher loading with temperature and it then disappears at high temperatures. These observations are in qualitative agreement with the experimental data of A. Inaba, Y. Koga and J. A. Morrison, J. Chem. Soc., Faraday Trans. 2, 1986, 82, 1635. In all cases where heat spikes are observed, the GCMC simulation results indicate that the heat spike is associated with the squeezing of molecules into the already dense first layer, and the rearrangement of molecules to form a highly structured fluid of this layer. While this squeezing into the first layer is happening, molecules continue to adsorb onto the relatively sparse second layer.


Asunto(s)
Argón/química , Grafito/química , Calor , Metano/química , Nitrógeno/química , Hollín/química , Adsorción , Calorimetría , Simulación por Computador
6.
J Phys Chem B ; 111(50): 13949-56, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18044864

RESUMEN

The effects of surface dimensions and topology on the adsorption of water on a graphite surface at 298 K were investigated using the grand canonical Monte Carlo (GCMC) simulation. Regarding the surface topology, we specifically considered the functional group and its position on the surface. The hydroxyl group (OH) is used as a model for the functional group. For describing the interaction of water, we used the potential model proposed by Muller et al., and the simulated isotherms of water in slit pores are found to depend on the position and concentration of the functional group. The onset of adsorption shifts to lower pressure when the concentration of functional group increases or when the functional group is positioned at the center of the graphene surface. The configuration of a group of functional groups also affects the adsorption isotherm. In all cases investigated, we have found that the hysteresis loop always exists, and the loop size depends on the concentration of the functional group and its position. Finally, we tested the molecular model of water adsorption on a functional graphite pore against the experimental data of a commercial activated carbon. The agreement is found to be satisfactory when the model porous solid is composed of pores having width in the range between 10 and 20 A and functional groups positioned at the center of the graphitic wall.

7.
Langmuir ; 21(12): 5639-46, 2005 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-15924500

RESUMEN

Grand canonical Monte Carlo (GCMC) simulation was used for the systematic investigation of the supercritical methane adsorption at 273 K on an open graphite surface and in slit-like micropores of different sizes. For both considered adsorption systems the calculated excess adsorption isotherms exhibit a maximum. The effect of the pore size on the maximum surface excess and isosteric enthalpy of adsorption for methane storage at 273 K is discussed. The microscopic detailed picture of methane densification near the homogeneous graphite wall and in slit-like pores at 273 K is presented with selected local density profiles and snapshots. Finally, the reliable pore size distributions, obtained in the range of the microporosity, for two pitch-based microporous activated carbon fibers are calculated from the local excess adsorption isotherms obtained via the GCMC simulation. The current systematic study of supercritical methane adsorption both on an open graphite surface and in slit-like micropores performed by the GCMC summarizes recent investigations performed at slightly different temperatures and usually a lower pressure range by advanced methods based on the statistical thermodynamics.

8.
Langmuir ; 21(5): 1827-33, 2005 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-15723478

RESUMEN

In this work, we propose an improvement of the classical Derjaguin-Broekhoff-de Boer (DBdB) theory for capillary condensation/evaporation in mesoporous systems. The primary idea of this improvement is to employ the Gibbs-Tolman-Koenig-Buff equation to predict the surface tension changes in mesopores. In addition, the statistical film thickness (so-called t-curve) evaluated accurately on the basis of the adsorption isotherms measured for the MCM-41 materials is used instead of the originally proposed t-curve (to take into account the excess of the chemical potential due to the surface forces). It is shown that the aforementioned modifications of the original DBdB theory have significant implications for the pore size analysis of mesoporous solids. To verify our improvement of the DBdB pore size analysis method (IDBdB), a series of the calcined MCM-41 samples, which are well-defined materials with hexagonally ordered cylindrical mesopores, were used for the evaluation of the pore size distributions. The correlation of the IDBdB method with the empirically calibrated Kruk-Jaroniec-Sayari (KJS) relationship is very good in the range of small mesopores. So, a major advantage of the IDBdB method is its applicability for small mesopores as well as for the mesopore range beyond that established by the KJS calibration, i.e., for mesopore radii greater than approximately 4.5 nm. The comparison of the IDBdB results with experimental data reported by Kruk and Jaroniec for capillary condensation/evaporation as well as with the results from nonlocal density functional theory developed by Neimark et al. clearly justifies our approach. Note that the proposed improvement of the classical DBdB method preserves its original simplicity and simultaneously ensures a significant improvement of the pore size analysis, which is confirmed by the independent estimation of the mean pore size by the powder X-ray diffraction method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA