Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biophys J ; 123(14): 2185-2198, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38678367

RESUMEN

Bupropion is an atypical antidepressant and smoking cessation drug that causes adverse effects such as insomnia, irritability, and anxiety. Bupropion inhibits dopamine and norepinephrine reuptake transporters and eukaryotic cation-conducting pentameric ligand-gated ion channels, such as nicotinic acetylcholine and serotonin type 3A receptors, at clinically relevant concentrations. Here, we demonstrate that bupropion also inhibits a prokaryotic homolog of pentameric ligand-gated ion channels, the Gloeobacter violaceus ligand-gated ion channel (GLIC). Using the GLIC as a model, we used molecular docking to predict binding sites for bupropion. Bupropion was found to bind to several sites within the transmembrane domain, with the predominant site being localized to the interface between transmembrane segments M1 and M3 of two adjacent subunits. Residues W213, T214, and W217 in the first transmembrane segment, M1, and F267 and I271 in the third transmembrane segment, M3, most frequently reside within a 4 Å distance from bupropion. We then used single amino acid substitutions at these positions and two-electrode voltage-clamp recordings to determine their impact on bupropion inhibitory effects. The substitution T214F alters bupropion potency by shifting the half-maximal inhibitory concentration to a 13-fold higher value compared to wild-type GLIC. Residue T214 is found within a previously identified binding pocket for neurosteroids and lipids in the GLIC. This intersubunit binding pocket is structurally conserved and almost identical to a binding pocket described for neurosteroids in γ-aminobutyric acid type A receptors. Our data thus suggest that the T214 that lines a previously identified lipophilic binding pocket in GLIC and γ-aminobutyric acid type A receptors is also a modulatory site for bupropion interaction with the GLIC.


Asunto(s)
Bupropión , Cianobacterias , Canales Iónicos Activados por Ligandos , Bupropión/farmacología , Bupropión/química , Bupropión/metabolismo , Canales Iónicos Activados por Ligandos/metabolismo , Canales Iónicos Activados por Ligandos/química , Sitios de Unión , Cianobacterias/metabolismo , Simulación del Acoplamiento Molecular , Secuencia de Aminoácidos
2.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873398

RESUMEN

Bupropion is an atypical antidepressant and smoking cessation drug which causes adverse effects such as insomnia, irritability, and anxiety. Bupropion inhibits dopamine and norepinephrine reuptake transporters and eukaryotic cation-conducting pentameric ligand-gated ion channels (pLGICs), such as nicotinic acetylcholine (nACh) and serotonin type 3A (5-HT3A) receptors, at clinically relevant concentrations. However, the binding sites and binding mechanisms of bupropion are still elusive. To further understand the inhibition of pLGICs by bupropion, in this work, using a prokaryotic homologue of pLGICs as a model, we examined the inhibitory potency of bupropion in Gloeobacter violaceus ligand-gated ion channel (GLIC), a proton-gated ion channel. Bupropion inhibited proton-induced currents in GLIC with an inhibitory potency of 14.9 ± 2.0 µM, comparable to clinically attainable concentrations previously shown to also modulate eukaryotic pLGICs. Using single amino acid substitutions in GLIC and two-electrode voltage-clamp recordings, we further determined a binding site for bupropion in the lower third of the first transmembrane segment M1 at residue T214. The sidechain of M1 T214 together with additional residues of M1 and also of M3 of the adjacent subunit have previously been shown to contribute to binding of other lipophilic molecules like allopregnanolone and pregnanolone.

3.
J Gen Physiol ; 155(6)2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37026993

RESUMEN

Serotonin or 5-hydroxytryptamine type 3 (5-HT3) receptors belong to the family of pentameric ligand-gated ion channels (pLGICs) that are therapeutic targets for psychiatric disorders and neurological diseases. Due to structural conservation and significant sequence similarities of pLGICs' extracellular and transmembrane domains, clinical trials for drug candidates targeting these two domains have been hampered by off-subunit modulation. With the present study, we explore the interaction interface of the 5-HT3A subunit intracellular domain (ICD) with the resistance to inhibitors of choline esterase (RIC-3) protein. Previously, we have shown that RIC-3 interacts with the L1-MX segment of the ICD fused to maltose-binding protein. In the present study, synthetic L1-MX-based peptides and Ala-scanning identify positions W347, R349, and L353 as critical for binding to RIC-3. Complementary studies using full-length 5-HT3A subunits confirm that the identified Ala substitutions reduce the RIC-3-mediated modulation of functional surface expression. Additionally, we find and characterize a duplication of the binding motif, DWLR…VLDR, present in both the MX-helix and the transition between the ICD MA-helix and transmembrane segment M4. Analogous Ala substitutions at W447, R449, and L454 disrupt MAM4-peptide RIC-3 interactions and reduce modulation of functional surface expression. In summary, we identify the binding motif for RIC-3 in 5-HT3A subunits at two locations in the ICD, one in the MX-helix and one at the MAM4-helix transition.


Asunto(s)
Receptores de Serotonina 5-HT3 , Serotonina , Humanos , Receptores de Serotonina 5-HT3/genética , Receptores de Serotonina 5-HT3/química , Dominios Proteicos
4.
Methods Mol Biol ; 2507: 425-444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35773596

RESUMEN

Proton coupled folate transporter (PCFT) is an integral membrane protein with 12 transmembrane segments localized to the plasma membrane. PCFT is the main route by which folate, vitamin B9, from dietary sources enters mammalian cells in the small intestine. Loss-of-function mutations in this membrane transport protein cause hereditary folate malabsorption, and upregulation of PCFT has been reported in cancer cells. Currently, a complete translocation mechanism of folate via PCFT is still missing. To reveal this mechanism via studies of structural architecture and structure-function relationships, soluble and stable PCFT in a phospholipid bilayer environment is needed. We therefore develop an approach to screen lipid environments in which PCFT is most soluble. Traditional in vitro expression and reconstitution into lipid bilayers of integral membrane proteins requires separate steps, which are costly and time-consuming. In this chapter, we describe a protocol for in vitro translation of PCFT into preformed lipid nanodiscs using a cell-free expression system, which helps to accelerate and reduce the cost of the sample preparation.


Asunto(s)
Deficiencia de Ácido Fólico , Transportador de Folato Acoplado a Protón , Animales , Ácido Fólico/metabolismo , Deficiencia de Ácido Fólico/metabolismo , Lípidos , Mamíferos/metabolismo , Mutación , Transportador de Folato Acoplado a Protón/química , Transportador de Folato Acoplado a Protón/genética , Transportador de Folato Acoplado a Protón/metabolismo
5.
PLoS One ; 16(11): e0253184, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34793461

RESUMEN

The Proton-Coupled Folate Transporter (PCFT) is a transmembrane transport protein that controls the absorption of dietary folates in the small intestine. PCFT also mediates uptake of chemotherapeutically used antifolates into tumor cells. PCFT has been identified within lipid rafts observed in phospholipid bilayers of plasma membranes, a micro environment that is altered in tumor cells. The present study aimed at investigating the impact of different lipids within Lipid-protein nanodiscs (LPNs), discoidal lipid structures stabilized by membrane scaffold proteins, to yield soluble PCFT expression in an E. coli lysate-based cell-free transcription/translation system. In the absence of detergents or lipids, we observed PCFT quantitatively as precipitate in this system. We then explored the ability of LPNs to support solubilized PCFT expression when present during in-vitro translation. LPNs consisted of either dimyristoyl phosphatidylcholine (DMPC), palmitoyl-oleoyl phosphatidylcholine (POPC), or dimyristoyl phosphatidylglycerol (DMPG). While POPC did not lead to soluble PCFT expression, both DMPG and DMPC supported PCFT translation directly into LPNs, the latter in a concentration dependent manner. The results obtained through this study provide insights into the lipid preferences of PCFT. Membrane-embedded or solubilized PCFT will enable further studies with diverse biophysical approaches to enhance the understanding of the structure and molecular mechanism of folate transport through PCFT.


Asunto(s)
Microdominios de Membrana/metabolismo , Transportador de Folato Acoplado a Protón/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Humanos , Lípidos
6.
J Biol Chem ; 296: 100250, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33384380

RESUMEN

Accumulating evidence shows that amyloids perform biological roles. We previously showed that an amyloid matrix composed of four members of the CRES subgroup of reproductive family 2 cystatins is a normal component of the mouse epididymal lumen. The cellular mechanisms that control the assembly of these and other functional amyloid structures, however, remain unclear. We speculated that cross-seeding between CRES members could be a mechanism to control the assembly of the endogenous functional amyloid. Herein we used thioflavin T assays and negative stain transmission electron microscopy to explore this possibility. We show that CRES3 rapidly formed large networks of beaded chains that possessed the characteristic cross-ß reflections of amyloid when examined by X-ray diffraction. The beaded amyloids accelerated the amyloidogenesis of CRES, a less amyloidogenic family member, in seeding assays during which beads transitioned into films and fibrils. Similarly, CRES seeds expedited CRES3 amyloidogenesis, although less efficiently than the CRES3 seeding of CRES. These studies suggest that CRES and CRES3 hetero-oligomerize and that CRES3 beaded amyloids may function as stable preassembled seeds. The CRES3 beaded amyloids also facilitated assembly of the unrelated amyloidogenic precursor Aß by providing a surface for polymerization though, intriguingly, CRES3 (and CRES) monomer/early oligomer profoundly inhibited Aß assembly. The cross-seeding between the CRES subgroup members is similar to that which occurs between bacterial curli proteins suggesting that it may be an evolutionarily conserved mechanism to control the assembly of some functional amyloids. Further, interactions between unrelated amyloidogenic precursors may also be a means to regulate functional amyloid assembly.


Asunto(s)
Amiloide/genética , Proteínas Amiloidogénicas/genética , Cistatinas/genética , Amiloide/química , Proteínas Amiloidogénicas/química , Animales , Benzotiazoles/química , Benzotiazoles/farmacología , Cistatinas/química , Epidídimo/química , Epidídimo/crecimiento & desarrollo , Masculino , Ratones , Microscopía Electrónica de Transmisión , Difracción de Rayos X
7.
Proc Natl Acad Sci U S A ; 117(28): 16363-16372, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32601205

RESUMEN

The epididymal lumen contains a complex cystatin-rich nonpathological amyloid matrix with putative roles in sperm maturation and sperm protection. Given our growing understanding for the biological function of this and other functional amyloids, the problem still remains: how functional amyloids assemble including their initial transition to early oligomeric forms. To examine this, we developed a protocol for the purification of nondenatured mouse CRES, a component of the epididymal amyloid matrix, allowing us to examine its assembly to amyloid under conditions that may mimic those in vivo. Herein we use X-ray crystallography, solution-state NMR, and solid-state NMR to follow at the atomic level the assembly of the CRES amyloidogenic precursor as it progressed from monomeric folded protein to an advanced amyloid. We show the CRES monomer has a typical cystatin fold that assembles into highly branched amyloid matrices, comparable to those in vivo, by forming ß-sheet assemblies that our data suggest occur via two distinct mechanisms: a unique conformational switch of a highly flexible disulfide-anchored loop to a rigid ß-strand and by traditional cystatin domain swapping. Our results provide key insight into our understanding of functional amyloid assembly by revealing the earliest structural transitions from monomer to oligomer and by showing that some functional amyloid structures may be built by multiple and distinctive assembly mechanisms.


Asunto(s)
Amiloide/química , Proteínas Amiloidogénicas/química , Cistatinas/química , Amiloide/metabolismo , Amiloide/ultraestructura , Proteínas Amiloidogénicas/metabolismo , Animales , Cristalografía por Rayos X , Cistatinas/metabolismo , Epidídimo/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína
8.
Sci Rep ; 9(1): 9210, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31239483

RESUMEN

An amyloid matrix composed of several family 2 cystatins, including the reproductive cystatin CRES, is an integral structure in the mouse epididymal lumen and has proposed functions in sperm maturation and protection. Understanding how CRES amyloid assembles in vitro may provide clues on how the epididymal amyloid matrix forms in vivo. We therefore purified full-length CRES under nondenaturing conditions and followed its aggregation from monomer to amyloid under conditions that may approximate those in the epididymal lumen. CRES transitioned into a metastable oligomer that was resistant to aggregation and only over extended time formed higher-ordered amyloids. High protein concentrations facilitated oligomer assembly and also were required to maintain the metastable state since following dilution the oligomer was no longer detected. Similar to other amyloid precursors, the formation of CRES amyloids correlated with a loss of α-helix and a gain of ß-sheet content. However, CRES is unique in that its amyloids are rich in antiparallel ß-sheets instead of the more common parallel ß-sheets. Taken together, our studies suggest that early metastable oligomers may serve as building blocks for functional amyloid assembly and further reveal that antiparallel ß-sheet-rich amyloids can be functional forms.


Asunto(s)
Amiloide/química , Cistatinas/química , Multimerización de Proteína , Animales , Epidídimo/metabolismo , Respuesta al Choque Térmico , Masculino , Ratones , Modelos Moleculares , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Estrés Mecánico
9.
Biomolecules ; 7(3)2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28661450

RESUMEN

Amyloids are traditionally considered pathological protein aggregates that play causative roles in neurodegenerative disease, diabetes and prionopathies. However, increasing evidence indicates that in many biological systems nonpathological amyloids are formed for functional purposes. In this review, we will specifically describe amyloids that carry out biological roles in sexual reproduction including the processes of gametogenesis, germline specification, sperm maturation and fertilization. Several of these functional amyloids are evolutionarily conserved across several taxa, including human, emphasizing the critical role amyloids perform in reproduction. Evidence will also be presented suggesting that, if altered, some functional amyloids may become pathological.


Asunto(s)
Amiloide/metabolismo , Reproducción , Animales , Femenino , Fertilización , Gametogénesis , Humanos , Masculino , Espermatozoides/metabolismo , Zona Pelúcida/metabolismo
10.
PLoS One ; 4(7): e6131, 2009 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-19584927

RESUMEN

BACKGROUND: Investigation of the mechanisms of guided cell migration can contribute to our understanding of many crucial biological processes, such as development and regeneration. Endogenous and exogenous direct current electric fields (dcEF) are known to induce directional cell migration, however the initial cellular responses to electrical stimulation are poorly understood. Ion fluxes, besides regulating intracellular homeostasis, have been implicated in many biological events, including regeneration. Therefore understanding intracellular ion kinetics during EF-directed cell migration can provide useful information for development and regeneration. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the initial events during migration of two osteogenic cell types, rat calvarial and human SaOS-2 cells, exposed to strong (10-15 V/cm) and weak (< or = 5 V/cm) dcEFs. Cell elongation and perpendicular orientation to the EF vector occurred in a time- and voltage-dependent manner. Calvarial osteoblasts migrated to the cathode as they formed new filopodia or lamellipodia and reorganized their cytoskeleton on the cathodal side. SaOS-2 cells showed similar responses except towards the anode. Strong dcEFs triggered a rapid increase in intracellular calcium levels, whereas a steady state level of intracellular calcium was observed in weaker fields. Interestingly, we found that dcEF-induced intracellular calcium elevation was initiated with a local rise on opposite sides in calvarial and SaOS-2 cells, which may explain their preferred directionality. In calcium-free conditions, dcEFs induced neither intracellular calcium elevation nor directed migration, indicating an important role for calcium ions. Blocking studies using cadmium chloride revealed that voltage-gated calcium channels (VGCCs) are involved in dcEF-induced intracellular calcium elevation. CONCLUSION/SIGNIFICANCE: Taken together, these data form a time scale of the morphological and physiological rearrangements underlying EF-guided migration of osteoblast-like cell types and reveal a requirement for calcium in these reactions. We show for the first time here that dcEFs trigger different patterns of intracellular calcium elevation and positional shifting in osteogenic cell types that migrate in opposite directions.


Asunto(s)
Calcio/metabolismo , Movimiento Celular , Estimulación Eléctrica , Osteoblastos/citología , Animales , Adhesión Celular , Línea Celular , Humanos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...