Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38930951

RESUMEN

The discovery and investigation of new natural compounds with antimicrobial activity are new potential strategies to reduce the spread of antimicrobial resistance. The presented study reveals, for the first time, the promising antibacterial potential of two fractions from Cornu aspersum mucus with an MW < 20 kDa and an MW > 20 kDa against five bacterial pathogens-Bacillus cereus 1085, Propionibacterium acnes 1897, Salmonella enterica 8691, Enterococcus faecalis 3915, and Enterococcus faecium 8754. Using de novo sequencing, 16 novel peptides with potential antibacterial activity were identified in a fraction with an MW < 20 kDa. Some bioactive compounds in a mucus fraction with an MW > 20 kDa were determined via a proteomic analysis on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and bioinformatics. High homology with proteins and glycoproteins was found, with potential antibacterial activity in mucus proteins named aspernin, hemocyanins, H-lectins, and L-amino acid oxidase-like protein, as well as mucins (mucin-5AC, mucin-5B, mucin-2, and mucin-17). We hypothesize that the synergy between the bioactive components determined in the composition of the fraction > 20 kDa are responsible for the high antibacterial activity against the tested pathogens in concentrations between 32 and 128 µg/mL, which is comparable to vancomycin, but without cytotoxic effects on model eukaryotic cells of Saccharomyces cerevisiae. Additionally, a positive effect, by reducing the levels of intracellular oxidative damage and increasing antioxidant capacity, on S. cerevisiae cells was found for both mucus extract fractions of C. aspersum. These findings may serve as a basis for further studies to develop a new antibacterial agent preventing the development of antibiotic resistance.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Moco , Péptidos , Antibacterianos/farmacología , Antibacterianos/química , Moco/química , Péptidos/farmacología , Péptidos/química , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecium/efectos de los fármacos , Bacillus cereus/efectos de los fármacos , Animales , Propionibacterium acnes/efectos de los fármacos , Salmonella enterica/efectos de los fármacos
2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38675466

RESUMEN

Several biologically active compounds involved in the green synthesis of silver and gold nanoparticles have been isolated from snail mucus and characterized. This paper presents a successful method for the application of snail mucus from Cornu aspersum as a bioreducing agent of copper sulfate and as a biostabilizer of the copper oxide nanoparticles (CuONPs-Muc) obtained. The synthesis at room temperature and neutral pH yielded nanoparticles with a spherical shape and an average diameter of 150 nm. The structure and properties of CuONPs-Muc were characterized using various methods and techniques, such as ultraviolet-visible spectroscopy (UV-vis), high-performance liquid chromatography (HPLC), one-dimensional polyacrylamide gel electrophoresis (1D-PAGE), up-conversion infrared spectroscopy Fourier transform (FTIR), scanning electron microscopy combined with energy dispersive spectroscopy (SEM/EDS), Raman spectroscopy and imaging, thermogravimetric analysis (TG-DSC), etc. Mucus proteins with molecular weights of 30.691 kDa and 26.549 kDa were identified, which are involved in the biogenic production of CuONPs-Muc. The macromolecular shell of proteins formed around the copper ions contributes to a higher efficiency of the synthesized CuONPs-Muc in inhibiting the bacterial growth of several Gram-positive (Bacillus subtilis NBIMCC2353, Bacillus spizizenii ATCC 6633, Staphylococcus aureus ATCC 6538, Listeria innocua NBIMCC8755) and Gram-negative (Escherichia coli ATCC8739, Salmonella enteitidis NBIMCC8691, Salmonella typhimurium ATCC 14028, Stenotrophomonas maltophilia ATCC 17666) bacteria compared to baseline mucus. The bioorganic synthesis of snail mucus presented here provides CuONPs-Muc with a highly pronounced antimicrobial effect. These results will expand knowledge in the field of natural nanomaterials and their role in emerging dosage forms.

3.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38256901

RESUMEN

Natural products and especially those from marine organisms are being intensively explored as an alternative to synthetic antibiotics. However, the exact mechanisms of their action are not yet well understood. The molecular masses of components in the hemolymph fraction with MW 50-100 kDa from Rapana venosa were determined using ImageQuant™ TL v8.2.0 software based on electrophoretic analysis. Mainly, three types of compounds with antibacterial potential were identified, namely proteins with MW at 50.230 kDa, 62.100 kDa and 93.088 kDa that were homologous to peroxidase-like protein, aplicyanin A and L-amino acid oxidase and functional units with MW 50 kDa from R. venous hemocyanin. Data for their antibacterial effect on Escherichia coli NBIMCC 8785 were obtained by CTC/DAPI-based fluorescent analysis (analysis based on the use of a functional fluorescence probe). The fluorescent analyses demonstrated that a 50% concentration of the fraction with MW 50-100 kDa was able to eliminate 99% of the live bacteria. The antimicrobial effect was detectable even at a 1% concentration of the active compounds. The bacteria in this case had reduced metabolic activity and a 24% decreased size. The fraction had superior action compared with another mollusc product-snail slime-which killed 60% of the E. coli NBIMCC 8785 cells at a 50% concentration and had no effect at a 1% concentration. The obtained results demonstrate the high potential of the fraction with MW 50-100 kDa from R. venosa to eliminate and suppress the development of Escherichia coli NBIMCC 8785 bacteria and could be applied as an appropriate component of therapeutics with the potential to replace antibiotics to avoid the development of antibiotic resistance.

4.
Biochem Biophys Rep ; 37: 101610, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38155944

RESUMEN

The fungal strain, Penicillium griseofulvum P29, isolated from a soil sample taken from Terra Nova Bay, Antarctica, was found to be a good producer of sialidase (P29). The present study was focused on the purification and structural characterization of the enzyme. P29 enzyme was purified using a Q-Sepharose column and fast performance liquid chromatography separation on a Mono Q column. The determined molecular mass of the purified enzyme of 40 kDa by SDS-PAGE and 39924.40 Da by matrix desorption/ionization mass spectrometry (MALDI-TOF/MS) analysis correlated well with the calculated mass (39903.75 kDa) from the amino acid sequence of the enzyme. P29 sialidase shows a temperature optimum of 37 °C and low-temperature stability, confirming its cold-active nature. The enzyme is more active towards α(2 â†’ 3) sialyl linkages than those containing α(2 â†’ 6) linkages. Based on the determined amino acid sequence and 3D structural modeling, a 3D model of P29 sialidase was presented, and the properties of the enzyme were explained. The conformational stability of the enzyme was followed by fluorescence spectroscopy, and the new enzyme was found to be conformationally stable in the neutral pH range of pH 6 to pH 9. In addition, the enzyme was more stable in an alkaline environment than in an acidic environment. The purified cold-active enzyme is the only sialidase produced and characterized from Antarctic fungi to date.

5.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-37259331

RESUMEN

This study is the first report describing the promising antitumor activity of biologically active compounds isolated from the hemolymph of marine snail Rapana venosa-a fraction with Mw between 50 and 100 kDa and two structural subunits (RvH1 and RvH2), tested on a panel of human breast cell lines-six lines of different molecular subtypes of breast cancer MDA-MB-231, MDA-MB-468, BT-474, BT-549, SK-BR-3, and MCF-7 and the non-cancerous MCF-10A. The fraction with Mw 50-100 kDa (HRv 50-100) showed good antitumor activity manifested by a significant decrease in cell viability, altered morphology, autophagy, and p53 activation in treated cancer cells. An apparent synergistic effect was observed for the combination of HRv 50-100 with cis-platin for all tested cell lines. The combination of HRv 50-100 with cisplatin and/or tamoxifen is three times more effective compared to treatment with classical chemotherapeutics alone. The main proteins in the active fraction, with Mw at ~50 kDa, ~65 kDa, ~100 kDa, were identified by MALDI-MS, MS/MS analyses, and bioinformatics. Homology was established with known proteins with antitumor potential detected in different mollusc species: peroxidase-like protein, glycoproteins Aplysianin A, L-amino acid oxidase (LAAO), and the functional unit with Mw 50 kDa of RvH. Our study reveals new perspectives for application of HRv 50-100 as an antitumor agent used alone or as a booster in combination with different chemotherapies.

6.
Biomedicines ; 11(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37371641

RESUMEN

Hemocyanins are oxygen-transporting glycoproteins in the hemolymph of some invertebrate species that attracted scientific interest as potential anticancer agents. The present study aims to assess the in vitro and in vivo anticancer activity of hemocyanins isolated from Helix aspersa, Helix lucorum, and Rapana venosa in the Graffi myeloid tumor model. The in vitro antitumor activity of the hemocyanins was determined by a MTT test and cytomorphological analysis by fluorescent and transmission electron microscopy. The in vivo effects of the hemocyanins were examined in hamsters transplanted with Graffi tumor. The serum antibody titers against the tested hemocyanins and tumor antigen were determined by ELISA. Histopathological assessment of the morphological features related to antitumor effect, immune system response, and toxicity in some internal organs was performed. The results of in vitro studies indicated that the tested hemocyanins induced significant antiproliferative and apoptogenic effects. The in vivo investigations demonstrated a protective antitumor effect, expressed in reduced transplantability, suppression of tumor growth and metastasis, reduced mortality, prolonged survival time, and absence of toxic side effects. The present study indicated that the antitumor activity of the studied hemocyanins was due to both immune stimulation and direct effects on the tumor cells, and they displayed their potential as therapeutic agents against hematological malignances.

7.
Curr Med Chem ; 29(42): 6479-6498, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35993464

RESUMEN

BACKGROUND: Some molluscan hemocyanins (Hcs) have significant immunological and antitumor potential, enabling their application in oncology. The antitumor activity of Hcs from marine snails Rapana venosa (RvH), giant keyhole limpet Megathura crenulata (KLH) and garden snails Helix lucorum (HlH), as well as their different derivatives, were studied in vitro on a permanent T24 cell line of bladder cancer and normal urothelial cell line HL 10/29 compared to doxorubicin. METHODS: The antiproliferative activity of the tested Hcs was determined using the WST-1 assay and BrdU ELISA assay. Morphological changes in both urothelial cell lines were confirmed by fluorescence microscopy. The proteomic analysis of a bladder cancer cell line before and after treatment with functional unit (FU) ßc-HlH-h using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and mass spectrometry revealed differences in the expression of some proteins. RESULTS: Studies prove that the T24 tumor cell line is dose- and time-dependent, sensitive to the action of the tested isoforms, and it glycosylated FU of these hemocyanins. Selective inhibition of T24 cell growth was observed after incubation with structural subunits (ßc-HlH, RvHI and RvHII) and FUs (ßc-HlH-h and RvHII-e). Additionally, fluorescent microphotographs did not show apoptotic or necrotic alterations in the normal urothelial cell line HL 10/29. The FU ßc-HlH-h demonstrated the highest antiproliferative effect (similarly to doxorubicin), in which predominantly apoptotic and less late apoptotic or necrotic changes in the tumor cells were observed. Several downand up-regulated proteins identified by proteome analysis may be associated with the apoptosis pathway. CONCLUSION: The present study illustrated the selectivity of the cytotoxic effect of Hcs against the Т24 cancer cell line. This is the first report of protein expression in T24 human bladder cancer cells under the influence of FU ßc-HlH-h. That is probably due to the specific oligosaccharide structures rich in methylated hexoses exposed on the surface of ßc-HlH-h.


Asunto(s)
Carcinoma , Neoplasias de la Vejiga Urinaria , Humanos , Hemocianinas/química , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Proteómica , Proteoma , Bromodesoxiuridina , Vejiga Urinaria/metabolismo , Línea Celular Tumoral , Isoformas de Proteínas , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico
8.
Biomedicines ; 10(3)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35327474

RESUMEN

Peptides isolated from the mucus of Cornu aspersum could be prototypes for antibiotics against pathogenic bacteria. Information regarding the mechanisms, effective concentration, and methods of application is an important tool for therapeutic, financial, and ecological regulation and a holistic approach to medical treatment. A peptide fraction with MW < 10 kDa was analyzed by MALDI-TOF-TOF using Autoflex™ III. The strain Escherichia coli NBIMCC 8785 (18 h and 48 h culture) was used. The changes in bacterial structure and metabolic activity were investigated by SEM, fluorescent, and digital image analysis. This peptide fraction had high inhibitory effects in surface and deep inoculations of E. coli of 1990.00 and 136.13 mm2/mgPr/µMol, respectively, in the samples. Thus, it would be effective in the treatment of infections involving bacterial biofilms and homogenous cells. Various deformations of the bacteria and inhibition of its metabolism were discovered and illustrated. The data on the mechanisms of impact of the peptides permitted the formulation of an algorithm for the treatment of infections depending on the phase of their development. The decrease in the therapeutic concentrations will be more sparing to the environment and will lead to a decrease in the cost of the treatment.

9.
Biomolecules ; 10(11)2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105875

RESUMEN

A number of studies have shown that glycosylation of proteins plays diverse functions in the lives of organisms, has crucial biological and physiological roles in pathogen-host interactions, and is involved in a large number of biological events in the immune system, and in virus and bacteria recognition. The large amount of scientific interest in glycoproteins of molluscan hemocyanins is due not only to their complex quaternary structures, but also to the great diversity of their oligosaccharide structures with a high carbohydrate content (2-9%). This great variety is due to their specific monosaccharide composition and different side chain composition. The determination of glycans and glycopeptides was performed with the most commonly used methods for the analysis of biomolecules, including peptides and proteins, including Matrix Assisted Laser Desorption/Ionisation-Time of Flight (MALDI-TOF-TOF), Liquid Chromatography - Electrospray Ionization-Mass Spectrometry (LC/ESI-MS), Liquid Chromatography (LC-Q-trap-MS/MS) or Nano- Electrospray Ionization-Mass Spectrometry (nano-ESI-MS) and others. The molluscan hemocyanins have complex carbohydrate structures with predominant N-linked glycans. Of interest are identified structures with methylated hexoses and xyloses arranged at different positions in the carbohydrate moieties of molluscan hemocyanins. Novel acidic glycan structures with specific glycosylation positions, e.g., hemocyanins that enable a deeper insight into the glycosylation process, were observed in Rapana venosa, Helix lucorum, and Haliotis tuberculata. Recent studies demonstrate that glycosylation plays a crucial physiological role in the immunostimulatory and therapeutic effect of glycoproteins. The remarkable diversity of hemocyanin glycan content is an important feature of their immune function and provides a new concept in the antibody-antigen interaction through clustered carbohydrate epitopes.


Asunto(s)
Hemocianinas/química , Oligosacáridos/análisis , Animales , Conformación de Carbohidratos , Moluscos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
Biomedicines ; 8(9)2020 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-32872361

RESUMEN

Natural products have long played a major role in medicine and science. The garden snail Cornu aspersum is a rich source of biologically active natural substances that might be an important source for new drugs to treat human disease. Based on our previous studies, nine fractions containing compounds with Mw <3 kDa; <10 kDa; <20 kDa; >20 kDa; >30 kDa>50 kDa and between 3 and 5 kDa; 5 and 10 kDa; and 10 and 30 kDa were purified from the mucus of C. aspersum and analyzed by tandem mass spectrometry (MALDI-TOF/TOF). Seventeen novel peptides with potential antibacterial activity were identified by de novo MS/MS sequencing using tandem mass spectrometry. The different fractions were tested for antibacterial activity against Gram─ (Pseudomonas aureofaciens and Escherichia coli) and Gram+ (Brevibacillus laterosporus) bacterial strains as well the anaerobic bacterium Clostridium perfringens. These results revealed that the peptide fractions exhibit a predominant antibacterial activity against B. laterosporus; the fraction with Mw 10-30 kDa against E. coli; another peptide fraction <20 kDa against P. aureofaciens; and the protein fraction >20 kDa against the bacterial strain C. perfringens. The discovery of new antimicrobial peptides (AMPs) from natural sources is of great importance for public health due to the AMPs' effective antimicrobial activities and low resistance rates.

11.
Metabolites ; 10(9)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887291

RESUMEN

Metabolic profiling based on 1H nuclear magnetic resonance (NMR) spectroscopy was applied with the aim to investigate the functional role of the metabolites in lyophilized mucus from the garden snail Helix aspersa. Twenty metabolites were unambiguously identified by 1H, 1D TOCSY, 2D J-resolved, 2D COSY, and 2D HSQC NMR spectra with water suppression. The metabolic profiles of two fractions with low molecular weight (Mw < 1 kDa and Mw < 3 kDa) are very similar. Metabolites with known antioxidant, antibacterial, and antimicrobial activity were detected by NMR metabolic analysis of mucus samples from Helix aspersa. Some of them were confirmed by mass spectrometric analysis. The primary structure of several peptides was identified in low molecular weight fractions (Mw < 1 kDa) by tandem mass spectrometry.

12.
Biomedicines ; 8(7)2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-32635655

RESUMEN

Hemocyanins are oxygen-transporting glycoproteins in the hemolymph of arthropods and mollusks that attract scientific interest with their diverse biological activities and potential applications in pharmacy and medicine. The aim of the present study was to assess the in vitro antitumor activity of hemocyanins isolated from marine snail Rapana venosa (RvH) and garden snails Helix lucorum (HlH) and Helix aspersa (HaH), as well the mucus of H. aspersa snails, in the HT-29 human colorectal carcinoma cell line. The effects of the hemocyanins on the cell viability and proliferation were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the alterations in the tumor cell morphology were examined by fluorescent and transmission electron microscopy. The results of the MTT assay showed that the mucus and α-subunit of hemocyanin from the snail H. aspersa had the most significant antiproliferative activity of the tested samples. Cytomorphological analysis revealed that the observed antitumor effects were associated with induction of apoptosis in the tumor cells. The presented data indicate that hemocyanins and mucus from H. aspersa have an antineoplastic activity and potential for development of novel therapeutics for treatment of colorectal carcinoma.

13.
Z Naturforsch C J Biosci ; 74(5-6): 113-123, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-30862766

RESUMEN

Various aspects of biomedical applications of molluscan hemocyanins, associated with their immunogenic properties and antitumor activity, promoted us to perform structural studies on these glycoproteins. The stability and reassociation behavior of native Cornu aspersum hemocyanin (CaH) are studied in the presence of different concentrations of Ca2+ and Mg2+ ions and pH values using electron microscopy. Higher concentrations of those ions led to a more rapid reassociation of CaH, resulting in stable multidecamers with different lengths. The conformational changes of native CaH are investigated within a wide pH-temperature range by UV circular dichroism. The relatively small changes of initial [θ]λ indicated that many secondary structural elements are preserved, even at high temperatures above 80°C, especially at neutral pH. The mechanism of thermal unfolding of CaH has a complicated character, and the process is irreversible. The conformational stability of the native didecameric aggregates of CaH toward various denaturants indicates that hydrophilic and polar forces stabilize the quaternary structure. For the first time, the unfolding of native CaH in water solutions in the presence of four different denaturants is investigated. The free energy of stabilization in water, ∆GDH2O, was calculated in the range of 15.48-16.95 kJ mol-1. The presented results will facilitate the further investigation of the properties and potential applications of CaH.


Asunto(s)
Hemocianinas/química , Desnaturalización Proteica , Caracoles/química , Animales , Calcio/química , Concentración de Iones de Hidrógeno , Magnesio/química , Conformación Proteica , Estabilidad Proteica
15.
Bioorg Med Chem ; 22(23): 6616-6624, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25456386

RESUMEN

Tyrosinase is a multifunctional, glycosylated and copper-containing oxidase which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors, newly discovered from natural and synthetic sources. The inhibitory strength is comparable to that of the standard inhibitor kojic acid. Also their inhibitory mechanisms are discussed. The new obtained compounds were also tested as PDE5 inhibitors and did not show significant inhibitory effect.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Piperazinas/química , Pirazoles/síntesis química , Pirazoles/farmacología , Sulfonamidas/síntesis química , Sulfonamidas/farmacología , Triazinas/síntesis química , Triazinas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Estructura Molecular , Monofenol Monooxigenasa/metabolismo , Piperazinas/farmacología , Purinas/química , Purinas/farmacología , Pirazoles/química , Citrato de Sildenafil , Relación Estructura-Actividad , Sulfonamidas/química , Triazinas/química
16.
J Fluoresc ; 23(4): 753-60, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23494164

RESUMEN

Molluscan hemocyanins are glycoproteins with different quaternary and carbohydrate structures. It was suggested that the carbohydrate chains of some Hcs are involved in their antiviral and antitumor effect, as well in the organization of the quaternary structure of the molecules. Using a well-known complex for saccharide sensing, positions and access to the carbohydrate chains in the native hemocyanins from Rapana venosa (RvH) and Helix lucorum (HlH) and also their structural subunits (RvH1, RvH2 and ßcHlH) and functional units (FUs) were analysed by fluorescence spectroscopy and circular dichroism. Almost no effect was observed in the fluorescence emission after titration of the complex with native RvH and HlH due to lack of free hydroxyl groups which are buried in the didecameric form of the molecules. Titration with the structural subunits ßcHlH and RvH2, increasing of the emission indicates the presence of free hydroxyl groups compared to the native molecules. Complex titration with the structural subunit ßc-HlH of H. lucorum Hcs leads to a 2.5 fold increase in fluorescence intensity. However, the highest emission was measured after titration of the complex with FU ßcHlH-g. The result was explained by the structural model of ßcHlH-g showing the putative position of the glycans on the surface of the molecule. The results of the fluorescent measurements are in good correlation with those of the circular dichroism data, applied to analyse the effect of titration on the secondary structure of the native molecules and functional units. The results also support our previously made suggestion that the N-linked oligosaccharide trees are involved in the quaternary organization of molluscan Hcs.


Asunto(s)
Caracoles Helix/química , Hemocianinas/química , Polisacáridos/química , Secuencia de Aminoácidos , Animales , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Espectrometría de Fluorescencia
17.
J Mass Spectrom ; 47(7): 940-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22791262

RESUMEN

The understanding of the function of macromolecular complexes is mainly related to a precise knowledge of their structure. Recently, the development of suitable mass spectrometric techniques (electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI)) and multi-angle laser light scattering has enabled mass determination of native complexes and of their subunits. By these techniques, the structure and association/dissociation behavior of huge molecules of molluscan Octopus vulgaris, Sepia officinalis and Rapana venosa have been characterized. Molecular masses of the native and dissociated molecule of cephalopodan Hcs O. vulgaris (3545 and 359.3 kDa, respectively) and S. officinalis (4134 and 443.8 kDa, respectively) revealed that only one type subunit organizes their molecules, while the presence of two isoforms with different masses (422.8 and 400.0 kDa) has been determined for gastropodan R. venosa Hc, aggregated into didecamers. The difference of their structural subunits was also established after limited proteolysis with TPCK-trypsin. Eight functional units (FUs) with masses of ~ 50 kDa were isolated from both subunits of RvH and isoform of Sepia officinalis, while seven FUs were purified from OvH. Further characterization of proteins by ESI-mass spectrometry (MS) and MALDI-MS, methods gave insights into post-translational modifications such as glycosylation. Glycosylation of O. vulgaris and S. officinalis Hcs was suggested based on the differences (11.6 and 40.0 kDa, respectively) between the masses measured by ESI-MS and those calculated by their gene sequences.


Asunto(s)
Hemocianinas/química , Moluscos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Glicosilación , Hemocianinas/ultraestructura , Luz , Microscopía Electrónica de Transmisión , Peso Molecular , Isoformas de Proteínas/química , Estructura Cuaternaria de Proteína , Dispersión de Radiación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
Protein Pept Lett ; 19(5): 538-43, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22486649

RESUMEN

We here describe the isolation and characterization of a tyrosinase from a newly isolated soil bacterium. 16S rDNA sequence analysis revealed that the bacterium most probably belongs to the species Laceyella sacchari (Ls) ( > 99.9 % identity). The tyrosinase extracellular enzymatic activity was induced in the presence of L-methionine and CuSO4. The crude enzyme was first purified by centrifugation followed by ammonium sulphate precipitation and ultrafiltration. After removal of a brown pigment, probably melanin, a purified enzyme was obtained by further separation of the crude protein mixture using size exclusion chromatography. Some 10.5 mg of pure tyrosinase (LsTyr) was isolated with a molecular mass of 30 910 Da, based on MALDI mass spectrometry. Together with the observed enzymatic activity, N-terminal chemical sequence analysis confirmed that the isolated enzyme is homologous to other tyrosinases. The kinetic parameters for the diphenol substrates L-DOPA and dopamine and for the monophenol substrate L-tyrosine were determined to be KM = 4.5 mM , 1.5 mM and 0.055 mM, and kcat/KM = 261.5 mM-1 s -1 , 30.6 mM-1 s-1 and 56.3 mM-1 s-1, respectively. Maximal activities of the purified enzyme were found to occur at pH 6.8.


Asunto(s)
Bacillales/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , ADN Bacteriano/genética , Dopamina/metabolismo , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Levodopa/metabolismo , Datos de Secuencia Molecular , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , ARN Ribosómico 16S/genética , Alineación de Secuencia , Tirosina/metabolismo
19.
Gene ; 487(2): 118-28, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21851852

RESUMEN

Hemocyanins are blue copper containing respiratory proteins residing in the hemolymph of many molluscs and arthropods. They can have different molecular masses and quaternary structures. Moreover, several molluscan hemocyanins are isolated with one, two or three isoforms occurring as decameric, didecameric, multidecameric or tubule aggregates. We could recently isolate three different hemocyanin isopolypeptides from the hemolymph of the garden snail Helix lucorum (HlH). These three structural subunits were named α(D)-HlH, α(N)-HlH and ß-HlH. We have cloned and sequenced their cDNA which is the first result ever reported for three isoforms of a molluscan hemocyanin. Whereas the complete gene sequence of α(D)-HlH and ß-HlH was obtained, including the 5' and 3' UTR, 180bp of the 5' end and around 900bp at the 3' end are missing for the third subunit. The subunits α(D)-HlH and ß-HlH comprise a signal sequence of 19 amino acids plus a polypeptide of 3409 and 3414 amino acids, respectively. We could determine 3031 residues of the α(N)-HLH subunit. Sequence comparison with other molluscan hemocyanins shows that α(D)-HlH is more related to Aplysia californicum hemocyanin than to each of its own isopolypeptides. The structural subunits comprise 8 different functional units (FUs: a, b, c, d, e, f, g, h) and each functional unit possesses a highly conserved copper-A and copper-B site for reversible oxygen binding. Potential N-glycosylation sites are present in all three structural subunits. We confirmed that all three different isoforms are effectively produced and secreted in the hemolymph of H. lucorum by analyzing a tryptic digest of the purified native hemocyanin by MALDI-TOF and LC-FTICR mass spectrometry.


Asunto(s)
ADN Complementario/análisis , Caracoles Helix/genética , Hemocianinas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Caracoles Helix/química , Caracoles Helix/metabolismo , Hemocianinas/química , Hemocianinas/aislamiento & purificación , Hemocianinas/metabolismo , Datos de Secuencia Molecular , Filogenia , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Homología de Secuencia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
20.
Artículo en Inglés | MEDLINE | ID: mdl-21536147

RESUMEN

o-Diphenol oxidase activities (o-diPO) of chemically modified functional unit RvH1-a of molluscan hemocyanin Rapana venosa were studied using L-Dopa and dopamine as substrates. With L-Dopa as substrate the native FU RvH1-a did not show any o-diPO activity. Therefore the native FU RvH1-a was converted to enzymatic active form, after treatment with SDS, trypsin, urea and different values of pH when its o-diPO activity was studied. The highest artificial induction of o-diPO activity was observed after incubation of FU with 3.0mM SDS, and RvH1-a shows both, dopamine (K(M)=6.53mM, k(cat)/K(M)=1.29) and L-Dopa (K(M)=2.0mM, k(cat)/K(M)=2.1) activity due to a more open active site of the enzyme and better access of the substrates. It was determined that the K(M) value of SDS-activated RvH1-a against dopamine is higher compared to those of hemocyanins from Helix vulgaris, Helix pomatia and native tyrosinase from Ipomoea batatas but much lower than that from Illex argentinus (ST94) tyrosinase and arthropodan hemocyanin from Carcinus aestuarii. The Km value of SDS-activated RvH1-a against L-Dopa is higher than those of hemocyanins from H. vulgaris and Cancer magister, but lower than that of the tyrosinase from Streptomyces albus.


Asunto(s)
Gastrópodos/enzimología , Hemocianinas/química , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/metabolismo , Subunidades de Proteína/metabolismo , Animales , Dopamina/metabolismo , Caracoles Helix/enzimología , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Levodopa/metabolismo , Subunidades de Proteína/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...