Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Med Sci Sports Exerc ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949160

RESUMEN

INTRODUCTION: Epigenetic aging, a marker of biological aging measured by DNA methylation, may be affected by behaviors, including sleep and physical activity. However, investigations of physical activity and sleep with epigenetic aging among pediatric populations are scant and have not accounted for correlated behaviors. METHODS: The study population included 472 Mexico City adolescents (52% female). Blood collection and 7-day wrist actigraphy (Actigraph GTX-BT) occurred during a follow-up visit when participants were 14.5 (2.09) years. Leukocyte DNA methylation was measured with the Infinium MethylationEPIC array after bisulfite conversion, and 9 epigenetic clocks were calculated. Sleep vs wake time was identified through a pruned dynamic programing algorithm, and physical activity was processed with Chandler cut-offs. Kmeans clustering was used to select actigraphy-assessed physical activity and sleep behavior clusters. Linear regression analyses were used to evaluate adjusted associations between the clusters and epigenetic aging. RESULTS: There were 3 unique clusters: "Short sleep/high sedentary behavior", "Adequate sleep duration and late timing/low moderate or vigorous physical activity (MVPA)", and "Adequate sleep duration/high MVPA". Compared to the "Adequate duration/high MVPA", adolescents with "Adequate duration and late sleep timing/low MVPA" had more accelerated aging for the GrimAge clock (ß = 0.63;95% CI 0.07, 1.19). In pubertal-stratified analyses, more mature adolescents in the "Adequate duration and late sleep timing/low MVPA group" had accelerated epigenetic aging. In contrast, females in the "Short sleep/high sedentary" group had decelerated epigenetic aging for the Wu pediatric clock. CONCLUSIONS: Associations between behavior clusters and epigenetic aging varied by pubertal status and sex. Contrary results in the Wu clock suggest the need for future research on pediatric-specific clocks.

2.
J Perinatol ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033231

RESUMEN

BACKGROUND: Neonatal opioid withdrawal syndrome (NOWS) is unpredictable. We assessed relationships between placental DNA methylation with in-utero opioid exposure and NOWS severity. METHODS: Secondary analysis of a prospective multicenter cohort study of pregnancies on methadone or buprenorphine, ≥34 weeks, singleton, 18 or greater. Placental biopsies were collected. Placental DNA methylation levels of ABCG1, ABCG2, CYP19A1, and HSD11B2 were quantified via pyrosequencing following bisulfite conversion. CYP19A1 mRNA levels and umbilical cord drug levels were determined by RT-qPCR and LC-MS respectively. Severe NOWS was diagnosed through Finnegan scoring. P value < 0.05 was significant. RESULTS: Thirty-eight dyads were included. Promoter region methylation for placental ABCB1 was lower in severe NOWS compared to non-severe NOWS (p = 0.04). Placental CYP19A1 methylation was inversely related to CYP19A1 mRNA levels and associated with umbilical cord norbuprenorphine levels (p < 0.01), but not umbilical cord methadone levels. DISCUSSION: Lower placental ABCB1 methylation was associated with severe NOWS. Higher placental CYP19A1 methylation correlated with higher umbilical cord norbuprenorphine levels.

3.
Environ Health Perspect ; 132(6): 67003, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833407

RESUMEN

BACKGROUND: Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. It is unknown whether epigenetic changes in surrogate tissues such as the blood are reflective of similar changes in target tissues such as cortex or liver. OBJECTIVE: We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. METHODS: Female mice were exposed to human relevant doses of either Pb (32 ppm) via drinking water or DEHP (5mg/kg-day) via chow for 2 weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and ChIP-enrich were used for genomic annotations and gene set enrichment tests of DMRs, respectively. RESULTS: The cortex contained the majority of DMRs associated with Pb (66%) and DEHP (57%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n=13 and 8 DMRs with Pb and DEHP exposure, respectively) and exposure types (n=55 and 39 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures, with some signatures replicated between target and surrogate tissues. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, and we again observed a replication of DMR signatures between blood and target tissues. Specifically, we observed hypermethylation of the Grb10 ICR in both blood and liver of Pb-exposed male animals. CONCLUSIONS: These data provide preliminary evidence that imprinted genes may be viable candidates in the search for epigenetic biomarkers of toxicant exposure in target tissues. Additional research is needed on allele- and developmental stage-specific effects, as well as whether other imprinted genes provide additional examples of this relationship. https://doi.org/10.1289/EHP14074.


Asunto(s)
Metilación de ADN , Impresión Genómica , Plomo , Hígado , Animales , Metilación de ADN/efectos de los fármacos , Ratones , Femenino , Hígado/efectos de los fármacos , Masculino , Plomo/toxicidad , Plomo/sangre , Impresión Genómica/efectos de los fármacos , Dietilhexil Ftalato/toxicidad , Encéfalo/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Exposición Materna , Ácidos Ftálicos/toxicidad , Embarazo , Efectos Tardíos de la Exposición Prenatal , Epigénesis Genética/efectos de los fármacos
4.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712146

RESUMEN

Background: Global and site-specific changes in DNA methylation and gene expression are associated with cardiovascular aging and disease, but how toxicant exposures during early development influence the normal trajectory of these age-related molecular changes, and whether there are sex differences, has not yet been investigated. Objectives: We used an established mouse model of developmental exposures to investigate the effects of perinatal exposure to either lead (Pb) or diethylhexyl phthalate (DEHP), two ubiquitous environmental contaminants strongly associated with CVD, on age-related cardiac DNA methylation and gene expression. Methods: Dams were randomly assigned to receive human physiologically relevant levels of Pb (32 ppm in water), DEHP (25 mg/kg chow), or control water and chow. Exposures started two weeks prior to mating and continued until weaning at postnatal day 21 (3 weeks of age). Approximately one male and one female offspring per litter were followed to 3 weeks, 5 months, or 10 months of age, at which time whole hearts were collected (n ≥ 5 per sex per exposure). Enhanced reduced representation bisulfite sequencing (ERRBS) was used to assess the cardiac DNA methylome at 3 weeks and 10 months, and RNA-seq was conducted at all 3 time points. MethylSig and edgeR were used to identify age-related differentially methylated regions (DMRs) and differentially expressed genes (DEGs), respectively, within each sex and exposure group. Cell type deconvolution of bulk RNA-seq data was conducted using the MuSiC algorithm and publicly available single cell RNA-seq data. Results: Thousands of DMRs and hundreds of DEGs were identified in control, DEHP, and Pb-exposed hearts across time between 3 weeks and 10 months of age. A closer look at the genes and pathways showing differential DNA methylation revealed that the majority were unique to each sex and exposure group. Overall, pathways governing development and differentiation were most frequently altered with age in all conditions. A small number of genes in each group showed significant changes in DNA methylation and gene expression with age, including several that were altered by both toxicants but were unchanged in control. We also observed subtle, but significant changes in the proportion of several cell types due to age, sex, and developmental exposure. Discussion: Together these data show that perinatal Pb or DEHP exposures deflect normal age-related gene expression, DNA methylation programs, and cellular composition across the life course, long after cessation of exposure, and highlight potential biomarkers of developmental toxicant exposures. Further studies are needed to investigate how these epigenetic and transcriptional changes impact cardiovascular health across the life course.

5.
bioRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766167

RESUMEN

To distinguish DNA methylation (DNAm) from cell proportion changes in whole placental tissue research, we developed a robust cell type-specific DNAm reference to estimate cell composition. We collated newly collected and existing cell type DNAm profiles quantified via Illumina EPIC or 450k microarrays. To estimate cell composition, we deconvoluted whole placental samples (n=36) with robust partial correlation based on the top 50 hyper- and hypomethylated sites per cell type. To test deconvolution performance, we evaluated RMSE in predicting principal component one of DNAm variation in 204 external placental samples. We analyzed DNAm profiles (n=368,435 sites) from 12 cell types: cytotrophoblasts (n=18), endothelial cells (n=19), Hofbauer cells (n=26), stromal cells (n=21), syncytiotrophoblasts (n=4), six lymphocyte types (n=36), and nucleated red blood cells (n=11). Median cell composition was consistent with placental biology: 60.4% syncytiotrophoblast, 17.1% stromal, 8.8% endothelial, 4.5% cytotrophoblast, 3.9% Hofbauer, 1.7% nucleated red blood cells, and 1.2% neutrophils. Our expanded reference outperformed an existing reference in predicting DNAm variation (15.4% variance explained, IQR=21.61) with cell composition estimates (RMSE:10.51 vs. 11.43, p-value<0.001). This cell type reference can robustly estimate cell composition from whole placental DNAm data to detect important cell types, reveal biological mechanisms, and improve casual inference.

6.
Environ Int ; 186: 108575, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38507935

RESUMEN

Although toxicology uses animal models to represent real-world human health scenarios, a critical translational gap between laboratory-based studies and epidemiology remains. In this study, we aimed to understand the toxicoepigenetic effects on DNA methylation after developmental exposure to two common toxicants, the phthalate di(2-ethylhexyl) phthalate (DEHP) and the metal lead (Pb), using a translational paradigm that selected candidate genes from a mouse study and assessed them in four human birth cohorts. Data from mouse offspring developmentally exposed to DEHP, Pb, or control were used to identify genes with sex-specific sites with differential DNA methylation at postnatal day 21. Associations of human infant DNA methylation in homologous mouse genes with prenatal DEHP or Pb were examined with a meta-analysis. Differential methylation was observed on 6 cytosines (adjusted-p < 0.05) and 90 regions (adjusted-p < 0.001). This translational approach offers a unique method that can detect conserved epigenetic differences that are developmentally susceptible to environmental toxicants.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Plomo , Ácidos Ftálicos , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Humanos , Lactante , Masculino , Ratones , Embarazo , Dietilhexil Ftalato/toxicidad , Metilación de ADN/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Epigénesis Genética/efectos de los fármacos , Plomo/toxicidad , Ácidos Ftálicos/toxicidad , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/inducido químicamente
7.
Environ Sci Technol ; 58(13): 5889-5898, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501580

RESUMEN

Human exposure to toxic chemicals presents a huge health burden. Key to understanding chemical toxicity is knowledge of the molecular target(s) of the chemicals. Because a comprehensive safety assessment for all chemicals is infeasible due to limited resources, a robust computational method for discovering targets of environmental exposures is a promising direction for public health research. In this study, we implemented a novel matrix completion algorithm named coupled matrix-matrix completion (CMMC) for predicting direct and indirect exposome-target interactions, which exploits the vast amount of accumulated data regarding chemical exposures and their molecular targets. Our approach achieved an AUC of 0.89 on a benchmark data set generated using data from the Comparative Toxicogenomics Database. Our case studies with bisphenol A and its analogues, PFAS, dioxins, PCBs, and VOCs show that CMMC can be used to accurately predict molecular targets of novel chemicals without any prior bioactivity knowledge. Our results demonstrate the feasibility and promise of computationally predicting environmental chemical-target interactions to efficiently prioritize chemicals in hazard identification and risk assessment.


Asunto(s)
Dioxinas , Bifenilos Policlorados , Humanos , Exposición a Riesgos Ambientales/análisis , Bifenilos Policlorados/análisis , Medición de Riesgo , Salud Pública
8.
Database (Oxford) ; 20242024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38204359

RESUMEN

PIWI-interacting RNAs (piRNAs) are a class of small non-coding RNAs that are highly expressed and extensively studied from the germline. piRNAs associate with PIWI proteins to maintain DNA methylation for transposon silencing and transcriptional gene regulation for genomic stability. Mature germline piRNAs have distinct characteristics including a 24- to 32-nucleotide length and a 2'-O-methylation signature at the 3' end. Although recent studies have identified piRNAs in somatic tissues, they remain poorly characterized. For example, we recently demonstrated notable expression of piRNA in the murine soma, and while overall expression was lower than that of the germline, unique characteristics suggested tissue-specific functions of this class. While currently available databases commonly use length and association with PIWI proteins to identify piRNA, few have included a chemical oxidation method that detects piRNA based on its 3' modification. This method leads to reproducible and rigorous data processing when coupled with next-generation sequencing and bioinformatics analysis. Here, we introduce piOxi DB, a user-friendly web resource that provides a comprehensive analysis of piRNA, generated exclusively through sodium periodate treatment of small RNA. The current version of piOxi DB includes 435 749 germline and 9828 somatic piRNA sequences robustly identified from M. musculus, M. fascicularis and H. sapiens. The database provides species- and tissue-specific data that are further analyzed according to chromosome location and correspondence to gene and repetitive elements. piOxi DB is an informative tool to assist broad research applications in the fields of RNA biology, cancer biology, environmental toxicology and beyond. Database URL:  https://pioxidb.dcmb.med.umich.edu/.


Asunto(s)
Biología Computacional , ARN de Interacción con Piwi , Animales , Ratones , Metilación de ADN , ARN , Células Germinativas
9.
Epigenomics ; 15(19): 965-981, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37942546

RESUMEN

Aims: To identify associations between DNA methylation (DNAm) across the epigenome and symptoms related to attention-deficit/hyperactivity disorder in a population of Hispanic children. Materials & methods: Among 517 participants in the ELEMENT study aged 9-18 years, we conducted an epigenome-wide association study examining associations between blood leukocyte DNAm and performance on the Conners' continuous performance test (CPT3). Results: DNAm at loci in or near ZNF814, ELF4 and OR6K6 and functional enrichment for gene pathways pertaining to ferroptosis, inflammation, immune response and neurotransmission were significantly related to CPT3 scores. Conclusion: DNAm was associated with CPT3 performance. Further analysis is warranted to understand how these genes and enriched pathways contribute to attention-deficit/hyperactivity disorder.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Metilación de ADN , Humanos , Niño , Estudio de Asociación del Genoma Completo , Epigenoma , Trastorno por Déficit de Atención con Hiperactividad/genética , Atención , Epigénesis Genética
10.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873115

RESUMEN

Background: Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. Objective: We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. Methods: Female mice were exposed to human relevant doses of either Pb (32ppm) via drinking water or DEHP (5 mg/kg-day) via chow for two weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and Chipenrich were used for genomic annotations and geneset enrichment tests of DMRs, respectively. Results: The cortex contained the majority of DMRs associated with Pb (69%) and DEHP (58%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n = 17 and 14 DMRs with Pb and DEHP exposure, respectively) and exposure types (n = 79 and 47 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, with 15 and 17 ICR-located DMRs across cortex, blood, and liver in each gene, respectively. The ICRs were also the location of DMRs replicated across target and surrogate tissues, suggesting epigenetic changes these regions may be potentially viable biomarkers. Conclusions: We observed Pb- and DEHP-specific DNAm changes in cortex, blood, and liver, and the greatest degree of overlap in DMR signatures was seen between exposures followed by sex and tissue type. DNAm at imprinted control regions was altered by both Pb and DEHP, highlighting the susceptibility of genomic imprinting to these exposures during the perinatal window of development.

11.
Chronobiol Int ; 40(9): 1224-1234, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37722702

RESUMEN

Maternal sleep and circadian health during pregnancy are emerging as important predictors of pregnancy outcomes, but examination of potential epigenetic mechanisms is rare. We investigated links between maternal leukocyte DNA methylation of circadian genes and birth outcomes within a pregnancy cohort. Women (n = 96) completed a questionnaire and provided a blood sample at least once during early-to-mid pregnancy (average gestation weeks = 14.2). Leukocyte DNA was isolated and DNA methylation (average percent of methylation) at multiple CpG sites within BMAL1, PER1, and MTNR1B genes were quantified by pyrosequencing. Birth outcomes including gestational age at delivery, birthweight, and head circumference were abstracted from medical charts. Linear regression analyses were run between each CpG site with birth outcomes, adjusting for important confounders. Sleep duration and timing were assessed as secondary exposures. Higher methylation of a CpG site in PER1 was associated with smaller log-transformed head circumference (ß=-0.02 with 95% CI -0.02 to 0.01; P, trend = 0.04). Higher methylation of MTNR1B (averaged across sites) was associated with lower log-transformed birthweight (-0.08 with 95% CI -0.16 to -0.01; P, trend = 0.0495). In addition, longer sleep duration was associated with higher birthweight (0.10 with 95% CI 0.02 to 0.18 comparing > 9 h to < 8 h; P, trend = 0.04). This pilot investigation revealed that higher methylation of PER1 and MTNR1B genes, and sleep duration measured in early-to-mid pregnancy were related to birth outcomes.


Asunto(s)
Ritmo Circadiano , Epigénesis Genética , Embarazo , Humanos , Femenino , Proyectos Piloto , Peso al Nacer/genética , Ritmo Circadiano/genética , Metilación de ADN , Sueño
12.
Environ Res ; 236(Pt 1): 116706, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37474091

RESUMEN

BACKGROUND: Epidemiological studies on children and adults have linked toxicants from plastics and personal care products to metabolic disruption. Yet, the impact of endocrine-disrupting chemicals (EDCs) on adolescent metabolic syndrome (MetS) risk during early and mid-adolescence is unclear. METHODS: To examine the links between exposure to EDCs and MetS risk and its components, cross-sectional data from 344 Mexican youth in early-to-mid adolescence (10-17 years) were analyzed. Urinary biomarker concentrations of phthalates, phenol, and paraben analytes were measured from a single spot urine sample collected in 2015; study personnel obtained anthropometric and metabolic measures. We examined associations between summary phthalates and metabolites, phenol, and paraben analytes with MetS risk z-scores using linear regression, adjusted for specific gravity, sex, age, pubertal status, smoking, alcohol intake, physical activity level, and screen time. As a secondary aim, mediation analysis was conducted to evaluate the role of hormones in the association between summary phthalates with lipids and MetS risk z-scores. RESULTS: The mean (SD) age was 13.2 (1.9) years, and 50.9% were female. Sex-stratified analyses revealed associations between summary phthalates and lipids ratio z-scores, including Σ DEHP [ß = 0.21 (95% CI: 0.04, 0.37; p < 0.01)], phthalates from plastic sources (Σ Plastic) [ß = 0.22 (95% CI: 0.05, 0.39; p < 0.01)], anti-androgenic phthalates (Σ AA) [ß = 0.22 (95% CI: 0.05, 0.39; p < 0.01)], and individual phthalate metabolites (MEHHP, MEOHP, and MECPP) among males. Among females, BPA [ß = 0.24 (95% CI: 0.03, 0.44; p < 0.05)] was positively associated with lipids ratio z-score and one phenol (2,5 DCP) [ß = 0.09 (95% CI: 0.01, 0.18); p < 0.05)] was associated with increased waist circumference z-score. Results showed no evidence of mediation by hormone concentrations in the association between summary phthalates with lipids ratio or MetS risk z-scores. CONCLUSION: Higher EDC exposure was positively associated with serum lipids during adolescence, particularly among males.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Síndrome Metabólico , Ácidos Ftálicos , Masculino , Adulto , Niño , Humanos , Adolescente , Femenino , Parabenos/análisis , Fenoles/orina , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/epidemiología , Estudios Transversales , Ácidos Ftálicos/orina , Fenol , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/orina , Lípidos , Contaminantes Ambientales/metabolismo , Exposición a Riesgos Ambientales/análisis
13.
Front Cell Dev Biol ; 11: 1198148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37384255

RESUMEN

Introduction: The developing epigenome changes rapidly, potentially making it more sensitive to toxicant exposures. DNA modifications, including methylation and hydroxymethylation, are important parts of the epigenome that may be affected by environmental exposures. However, most studies do not differentiate between these two DNA modifications, possibly masking significant effects. Methods: To investigate the relationship between DNA hydroxymethylation and developmental exposure to common contaminants, a collaborative, NIEHS-sponsored consortium, TaRGET II, initiated longitudinal mouse studies of developmental exposure to human-relevant levels of the phthalate plasticizer di(2-ethylhexyl) phthalate (DEHP), and the metal lead (Pb). Exposures to 25 mg DEHP/kg of food (approximately 5 mg DEHP/kg body weight) or 32 ppm Pb-acetate in drinking water were administered to nulliparous adult female mice. Exposure began 2 weeks before breeding and continued throughout pregnancy and lactation, until offspring were 21 days old. At 5 months, perinatally exposed offspring blood and cortex tissue were collected, for a total of 25 male mice and 17 female mice (n = 5-7 per tissue and exposure). DNA was extracted and hydroxymethylation was measured using hydroxymethylated DNA immunoprecipitation sequencing (hMeDIP-seq). Differential peak and pathway analysis was conducted comparing across exposure groups, tissue types, and animal sex, using an FDR cutoff of 0.15. Results: DEHP-exposed females had two genomic regions with lower hydroxymethylation in blood and no differences in cortex hydroxymethylation. For DEHP-exposed males, ten regions in blood (six higher and four lower) and 246 regions (242 higher and four lower) and four pathways in cortex were identified. Pb-exposed females had no statistically significant differences in blood or cortex hydroxymethylation compared to controls. Pb-exposed males, however, had 385 regions (all higher) and six pathways altered in cortex, but no differential hydroxymethylation was identified in blood. Discussion: Overall, perinatal exposure to human-relevant levels of two common toxicants showed differences in adult DNA hydroxymethylation that was specific to sex, exposure type, and tissue, but male cortex was most susceptible to hydroxymethylation differences by exposure. Future assessments should focus on understanding if these findings indicate potential biomarkers of exposure or are related to functional long-term health effects.

14.
Exposome ; 3(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333730

RESUMEN

The accumulation of every day exposures can impact health across the life course, but our understanding of such exposures is impeded by our ability to delineate the relationship between an individual's early life exposome and later life health effects. Measuring the exposome is challenging. Exposure assessed at a given time point captures a snapshot of the exposome but does not represent the full spectrum of exposures across the life course. In addition, the assessment of early life exposures and their effects is often further challenged by lack of relevant samples and the time gap between exposures and related health outcomes in later life. Epigenetics, specifically DNA methylation, has the potential to overcome these barriers as environmental epigenetic perturbances can be retained through time. In this review, we describe how DNA methylation can be framed in the world of the exposome. We offer three compelling examples of common environmental exposures, including cigarette smoke, the endocrine active compound bisphenol A (BPA), and the metal lead (Pb), to illustrate the application of DNA methylation as a proxy to measure the exposome. We discuss areas for future explorations and current limitations of this approach. Epigenetic profiling is a promising and rapidly developing tool and field of study, offering us a unique and powerful way to assess the early life exposome and its effects across different life stages.

15.
Nat Commun ; 14(1): 2449, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117186

RESUMEN

Human health is determined by the interaction of our environment with the genome, epigenome, and microbiome, which shape the transcriptomic, proteomic, and metabolomic landscape of cells and tissues. Precision environmental health is an emerging field leveraging environmental and system-level ('omic) data to understand underlying environmental causes of disease, identify biomarkers of exposure and response, and develop new prevention and intervention strategies. In this article we provide real-life illustrations of the utility of precision environmental health approaches, identify current challenges in the field, and outline new opportunities to promote health through a precision environmental health framework.


Asunto(s)
Microbiota , Proteómica , Humanos , Promoción de la Salud , Salud Ambiental , Biomarcadores
16.
Environ Sci Pollut Res Int ; 30(24): 65544-65557, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37086320

RESUMEN

Endocrine-disrupting chemicals (EDCs) may impact sleep during the menopausal transition by altering sex hormones. However, these studies are scarce among Latin American women. This investigation utilized cross-sectional and retrospective data from midlife women enrolled in the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) study to examine associations between exposure to EDCs (phthalates, phenols, and parabens) and sleep health measures. For cross-sectional analyses, single spot urine samples were collected between 2017-2019 from a pilot sample of women (N = 91) of midlife age to estimate the urinary concentration of individual phthalates, phenols, and parabens and to calculate the summary concentration of phthalate mixtures. Seven-day nightly sleep duration, midpoint, and fragmentation were obtained from wrist-actigraphy devices and estimated from the actigraphy data using a pruned dynamic programming algorithm. Self-reported poor sleep quality was assessed by one item from the Pittsburgh Sleep Quality Index (PSQI). We examined associations between urinary summary phthalate mixtures, phthalate metabolites, phenol, and paraben analytes with each sleep measure using linear or logistic (to compute odds of poor sleep quality only) regression models adjusted for specific gravity, age, and socioeconomic status. We ran similar regression models for retrospective analyses (N = 74), except that urine exposure biomarker data were collected in 2008 when women were 24-50 years old. At the 2017-2019 midlife visit, 38% reported poor sleep quality. Cross-sectionally, EDCs were associated with longer sleep duration, earlier sleep timing, and more fragmented sleep. For example, every 1-unit IQR increase in the phenol triclosan was associated with a 26.3 min per night (95% CI: 10.5, 42.2; P < 0.05) longer sleep duration and marginally associated with 0.2 decimal hours (95% CI: -0.4, 0.0; P < 0.10) earlier sleep midpoint; while every 1-unit IQR increase in the phthalate metabolite MEHP was associated with 1.1% higher sleep fragmentation (95% CI: 0.1, 2.1; P < 0.05). Retrospective study results generally mirrored cross-sectional results such that EDCs were linked to longer sleep duration, earlier sleep timing, and more fragmented sleep. EDCs were not significantly associated with odds of self-reported poor sleep quality. Results from cross-sectional and retrospective analyses revealed that higher exposure to EDCs was predictive of longer sleep duration, earlier sleep timing, and more fragmented sleep among midlife women.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Ácidos Ftálicos , Trastornos del Inicio y del Mantenimiento del Sueño , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Estudios Retrospectivos , Parabenos/análisis , Estudios Transversales , Fenoles/análisis , Fenol/análisis , México , Ácidos Ftálicos/metabolismo , Disruptores Endocrinos/análisis , Sueño , Contaminantes Ambientales/análisis , Exposición a Riesgos Ambientales/análisis
17.
Commun Biol ; 6(1): 264, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914823

RESUMEN

The placenta mediates adverse pregnancy outcomes, including preeclampsia, which is characterized by gestational hypertension and proteinuria. Placental cell type heterogeneity in preeclampsia is not well-understood and limits mechanistic interpretation of bulk gene expression measures. We generated single-cell RNA-sequencing samples for integration with existing data to create the largest deconvolution reference of 19 fetal and 8 maternal cell types from placental villous tissue (n = 9 biological replicates) at term (n = 40,494 cells). We deconvoluted eight published microarray case-control studies of preeclampsia (n = 173 controls, 157 cases). Preeclampsia was associated with excess extravillous trophoblasts and fewer mesenchymal and Hofbauer cells. Adjustment for cellular composition reduced preeclampsia-associated differentially expressed genes (log2 fold-change cutoff = 0.1, FDR < 0.05) from 1154 to 0, whereas downregulation of mitochondrial biogenesis, aerobic respiration, and ribosome biogenesis were robust to cell type adjustment, suggesting direct changes to these pathways. Cellular composition mediated a substantial proportion of the association between preeclampsia and FLT1 (37.8%, 95% CI [27.5%, 48.8%]), LEP (34.5%, 95% CI [26.0%, 44.9%]), and ENG (34.5%, 95% CI [25.0%, 45.3%]) overexpression. Our findings indicate substantial placental cellular heterogeneity in preeclampsia contributes to previously observed bulk gene expression differences. This deconvolution reference lays the groundwork for cellular heterogeneity-aware investigation into placental dysfunction and adverse birth outcomes.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Femenino , Humanos , Placenta/metabolismo , Preeclampsia/genética , Preeclampsia/metabolismo , Trofoblastos/metabolismo , Análisis por Micromatrices , Expresión Génica
18.
Clin Epigenetics ; 15(1): 49, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36964604

RESUMEN

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are chemicals that are resistant to degradation and ubiquitous in our environments. PFAS may impact the developing epigenome, but current human evidence is limited to assessments of total DNA methylation. We assessed associations between first trimester PFAS exposures with newborn DNA methylation, including 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC). DNA methylation mediation of associations between PFAS and birth outcomes were explored in the Michigan Mother Infant Pairs cohort. Nine PFAS were measured in maternal first trimester blood. Seven were highly detected and included for analysis: PFHxS, PFOA, PFOS, PFNA, PFDA, PFUnDA, and MeFOSAA. Bisulfite-converted cord blood DNA (n = 141) and oxidative-bisulfite-converted cord blood (n = 70) were assayed on Illumina MethylationEPIC BeadChips to measure total DNA methylation (5-mC + 5-hmC) and 5-mC/5-hmC. Correcting for multiple comparisons, beta regressions were used to assess associations between levels of PFAS and total methylation, 5-mC, or 5-hmC. Nonlinear mediation analyses were used to assess the epigenetic meditation effect between PFAS and birth outcomes. RESULTS: PFAS was significantly associated with total methylation (q < 0.05: PFHxS-12 sites; PFOS-19 sites; PFOA-2 sites; PFNA-3 sites; PFDA-4 sites). In 72 female infants and 69 male infants, there were sex-specific associations between five PFAS and DNA methylation. 5-mC and 5-hmC were each significantly associated with thousands of sites for PFHxS, PFOS, PFNA, PFDA, PFUnDA, and MeFOSAA (q < 0.05). Clusters of 5-mC and 5-hmC sites were significant mediators between PFNA and PFUnDA and decreased gestational age (q < 0.05). CONCLUSIONS: This study demonstrates the mediation role of specific types of DNA methylation on the relationship between PFAS exposure and birth outcomes. These results suggest that 5-mC and 5-hmC may be more sensitive to the developmental impacts of PFAS than total DNA methylation.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Embarazo , Recién Nacido , Humanos , Masculino , Lactante , Femenino , Madres , Metilación de ADN , Michigan
19.
Obesity (Silver Spring) ; 31(4): 912-922, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36847394

RESUMEN

OBJECTIVE: The aim of this study was to evaluate whether short sleep duration or later sleep timing is a risk factor for insulin resistance (IR) in late adolescence. METHODS: Mexico City adolescents enrolled in a longitudinal birth cohort (ELEMENT) took part in two study visits during peri-puberty that occurred approximately 2 years apart. IR was assessed with serum glucose and insulin. Four groups were defined using puberty-specific cut points: no IR over the follow-up period, transition from normal to IR, transition from IR to normal, and IR at both time points. Baseline sleep assessments were measured with 7-day wrist actigraphy. Multinomial logistic regression models were used to evaluate associations between sleep duration and timing with homeostatic model assessment of insulin resistance categories, adjusting for age, sex, and baseline pubertal status. RESULTS: Adolescents who were ≥ 1 hour below the sleep duration recommendations-for-age were 2.74 times more likely to develop IR (95% CI: 1.0-7.4). Similarly, adolescents who were in the latest category of sleep midpoint (>4:33 a.m.) were more likely than those with earliest midpoints (1 a.m.-3 a.m.) to develop IR (odds ratio = 2.63, 95% CI: 1.0-6.7). Changes in adiposity over follow-up did not mediate sleep and IR. CONCLUSIONS: Insufficient sleep duration and late sleep timing were associated with development of IR over a 2-year period in late adolescence.


Asunto(s)
Resistencia a la Insulina , Humanos , Adolescente , Duración del Sueño , Sueño , Privación de Sueño , Obesidad
20.
Epigenomes ; 7(1)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36810558

RESUMEN

DNA methylation (DNAm) is a plausible mechanism underlying cardiometabolic abnormalities, but evidence is limited among youth. This analysis included 410 offspring of the Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) birth cohort followed up to two time points in late childhood/adolescence. At Time 1, DNAm was quantified in blood leukocytes at long interspersed nuclear elements (LINE-1), H19, and 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD-2), and at Time 2 in peroxisome proliferator-activated receptor alpha (PPAR-α). At each time point, cardiometabolic risk factors were assessed including lipid profiles, glucose, blood pressure, and anthropometry. Linear mixed effects models were used for LINE-1, H19, and 11ß-HSD-2 to account for the repeated-measure outcomes. Linear regression models were conducted for the cross-sectional association between PPAR-α with the outcomes. DNAm at LINE-1 was associated with log glucose at site 1 [ß = -0.029, p = 0.0006] and with log high-density lipoprotein cholesterol at site 3 [ß = 0.063, p = 0.0072]. 11ß-HSD-2 DNAm at site 4 was associated with log glucose (ß = -0.018, p = 0.0018). DNAm at LINE-1 and 11ß-HSD-2 was associated with few cardiometabolic risk factors among youth in a locus-specific manner. These findings underscore the potential for epigenetic biomarkers to increase our understanding of cardiometabolic risk earlier in life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...