Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125213, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39332172

RESUMEN

Single benzene fluorophores (SBFs) have garnered significant research attention due to their ease of preparation, seamless diffusion into biological samples, and low molecular weight. Accurately predicting the molecular photophysical properties, specifically the maximum absorption and emission wavelengths, is pivotal in advancing functional SBFs. In this study, we introduce a machine-learning model to estimate the maximum absorption and emission wavelengths of SBFs precisely. This model leverages a Full Connect Neural Network and computational chemistry and is tailored to address the challenges associated with a relatively small dataset (81 SBFs). Remarkably, our model (SBFs-ML) demonstrates impressive accuracy, yielding a mean relative error of 1.54 % and 2.93 % for SBFs' maximum absorption and emission wavelengths, respectively. Importantly, the SBFs-ML was bullied based on only three descriptors, resulting in strong interpretability. Experimental results have strongly corroborated these predictions. Our prediction methods are poised to facilitate significantly the efficient design and creation of SBFs.

2.
Langmuir ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012063

RESUMEN

A series of 1,2,4-triazolo-quinazolinones and 1,2-benzisothiazolone derivatives (S1-S12) were successfully synthesized as environmentally friendly alternatives to copper-based antifouling paints using N-alkylation, cyclocondensation, and one-pot three-component and amide coupling reactions. The monoclinic structure of single-crystal 1,2,4-triazolo-quinazolin-acetic acid (S8) was confirmed by single-crystal X-ray diffraction analysis. All the synthesized molecules were studied for their in silico molecular docking interactions with three target proteins, namely, RbmA, ToxR, and Bap. Following that, the antialgal activity was assessed against two types of marine algae: Chlorella sp. and Chaetoceros curvisetus. The minimal inhibitory concentration and zone of inhibition have been used to evaluate the antibacterial activities of S1-S12 against both marine Gram-positive (Staphylococcus aureus) and Gram-negative (Vibrio parahemolyticus and Vibrio vulnificus) bacteria. Additionally, antifouling studies have been done on all the compounds, and among them, 1,2,4-triazolo-quinazolinyl-acetate (S7), 1,2,4-triazolo-quinazolinyl-acetic acid (S8), 1,2,4-triazolo-quinazolinyl-oxobutanoate (S9), benzo[d]isothiazolyl butanoate (S10), benzo[d]isothiazolyl-acetic acid (S11), and 1,2,4-triazolo-quinazolinyl-acetyl-benzo[d]isothiazolone (S12) exhibited good antialgal, antibacterial, and antifouling activities.

3.
Zool Res ; 45(3): 520-534, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38682434

RESUMEN

Iridovirus poses a substantial threat to global aquaculture due to its high mortality rate; however, the molecular mechanisms underpinning its pathogenesis are not well elucidated. Here, a multi-omics approach was applied to groupers infected with Singapore grouper iridovirus (SGIV), focusing on the roles of key metabolites. Results showed that SGIV induced obvious histopathological damage and changes in metabolic enzymes within the liver. Furthermore, SGIV significantly reduced the contents of lipid droplets, triglycerides, cholesterol, and lipoproteins. Metabolomic analysis indicated that the altered metabolites were enriched in 19 pathways, with a notable down-regulation of lipid metabolites such as glycerophosphates and alpha-linolenic acid (ALA), consistent with disturbed lipid homeostasis in the liver. Integration of transcriptomic and metabolomic data revealed that the top enriched pathways were related to cell growth and death and nucleotide, carbohydrate, amino acid, and lipid metabolism, supporting the conclusion that SGIV infection induced liver metabolic reprogramming. Further integrative transcriptomic and proteomic analysis indicated that SGIV infection activated crucial molecular events in a phagosome-immune depression-metabolism dysregulation-necrosis signaling cascade. Of note, integrative multi-omics analysis demonstrated the consumption of ALA and linoleic acid (LA) metabolites, and the accumulation of L-glutamic acid (GA), accompanied by alterations in immune, inflammation, and cell death-related genes. Further experimental data showed that ALA, but not GA, suppressed SGIV replication by activating antioxidant and anti-inflammatory responses in the host. Collectively, these findings provide a comprehensive resource for understanding host response dynamics during fish iridovirus infection and highlight the antiviral potential of ALA in the prevention and treatment of iridoviral diseases.


Asunto(s)
Enfermedades de los Peces , Iridovirus , Hígado , Ácido alfa-Linolénico , Animales , Ácido alfa-Linolénico/metabolismo , Enfermedades de los Peces/virología , Enfermedades de los Peces/metabolismo , Hígado/metabolismo , Hígado/virología , Iridovirus/fisiología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/virología , Metabolómica , Antivirales/farmacología , Transcriptoma , Reprogramación Metabólica , Multiómica
4.
World J Psychiatry ; 13(9): 607-619, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37771645

RESUMEN

Deep transcranial magnetic stimulation (DTMS) is a new non-invasive neuromodulation technique based on repetitive transcranial magnetic stimulation tech-nology. The new H-coil has significant advantages in the treatment and mechanism research of psychiatric and neurological disorders. This is due to its deep stimulation site and wide range of action. This paper reviews the clinical progress of DTMS in psychiatric and neurological disorders such as Parkinson's disease, Alzheimer's disease, post-stroke motor dysfunction, aphasia, and other neurological disorders, as well as anxiety, depression, and schizophrenia.

5.
Nat Prod Res ; : 1-7, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37695019

RESUMEN

There is growing evidence that bioactive substances produced by microbial endophytes have applicability in medicine, agriculture and industry. To enrich the bioactive substances, in our search for new bioactive metabolites from fungi Aspergillus, the phytochemical reinvestigation on the Aspergillus sp. 0338 was carried out, and this led to the isolation of three new (1-3) and five known alkaloids (4-8). Their structures were elucidated by spectroscopic analysis, including extensive 1D and 2D NMR techniques, as well as comparison with literature values. Additionally, compounds 1-3 were evaluated for their anti-MRSA activities. The results revealed that compounds 1-3 exhibited good inhibitions with IZD of 15.2 ± 1.8, 14.6 ± 2.0, and 13.4 ± 2.2 mm, respectively.

6.
Front Cell Infect Microbiol ; 13: 1240303, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37731822

RESUMEN

Background: The COVID-19 pandemic has brought about significant changes in the medical field, yet the use of botulinum toxin type A has remained uninterrupted. Plastic surgeons must carefully consider the timing of administering botulinum toxin type A to patients who have recovered from COVID-19. Methods: A questionnaire survey was conducted among patients who had contracted and recovered from SARS-CoV-2 within a month. The survey aimed to investigate various indicators in patients who had received botulinum toxin A injections at the same site before and after their infection, including pain scores and allergic reactions and the occurrence of complications. Results: The pain scores of patients who contracted SARS-CoV-2 infection between 14-21 days post-infection exhibited significant variation from previous injections. However, patients who contracted the infection between 22-28 days post-infection did not exhibit significant variation from previous injections. Furthermore, the incidence of allergic reactions and complications following botulinum toxin injection within one month after contracting the infection did not significantly differ from that observed prior to infection. Conclusion: Administering botulinum toxin type A three weeks after COVID-19 recovery is a justifiable and comparatively secure approach.


Asunto(s)
Toxinas Botulínicas Tipo A , COVID-19 , Hipersensibilidad , Humanos , Toxinas Botulínicas Tipo A/efectos adversos , SARS-CoV-2 , Pandemias , Dolor/tratamiento farmacológico , Dolor/etiología , Inyecciones Intraoculares
7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(4): 843-847, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37545084

RESUMEN

Objective: To summarize the clinical efficacy and nursing experience of intrauterine blood transfusion (IUT) treatment for fetal anemia cases. Methods: The clinical data of 4 fetal anemia cases receiving IUT in Beijing Obstetrics and Gynecology Hospital, Capital Medical University between 2020 and 2022 were collected. Four pregnant women aged 24-38 years were included in the study. They carried fetuses with anemia of unknown causes. The four pregnant women developed anxiety after they were informed of the diagnosis of fetal anemia. One-on-one psychological counseling before the IUT procedure and one-on-one companionship over the course of the surgery were provided for the pregnant women. In addition, they were closely monitored for blood transfusion reactions. Postprocedural observation of the puncture site and 24-hour monitoring of the newborns were also conducted. Results: The four pregnant women underwent 1-3 times of IUT in the second and third trimesters, with the minimum gestational age at the time of IUT being 25 + weeks and the blood transfusion volume being 20-107 mL/time. Two pregnant women experienced irregular uterine contractions during IUT in the third trimester. Other than that, all other IUT treatments were successful. After IUT, there was a significant improvement in fetal hemoglobin, peak systolic velocity of the middle cerebral artery (MCA-PSV), and cardiothoracic area ratio. One case did not give birth in our hospital and the outcome of the fetus was not known. The other three fetuses achieved good outcomes. Conclusion: Positive preprocedural psychological counseling for pregnant women, close intraoprocedural and postprocedural pregnancy monitoring, and the prevention of maternal and fetal complications are the key to improving the clinical efficacy of IUT and achieving a good fetal outcome.


Asunto(s)
Anemia , Enfermedades Fetales , Atención de Enfermería , Femenino , Humanos , Embarazo , Anemia/diagnóstico , Anemia/terapia , Velocidad del Flujo Sanguíneo , Transfusión de Sangre Intrauterina/métodos , Sangre Fetal , Enfermedades Fetales/diagnóstico , Enfermedades Fetales/terapia , Feto , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven , Adulto
8.
Appl Microbiol Biotechnol ; 107(16): 5257-5267, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37405431

RESUMEN

The engineered probiotic Escherichia coli Nissle 1917 (EcN) is expected to be employed in the diagnosis and treatment of various diseases. However, the introduced plasmids typically require antibiotics to maintain genetic stability, and the cryptic plasmids in EcN are usually eliminated to avoid plasmid incompatibility which may change the inherent probiotic characteristics. Here, we provided a simple design to minimize the genetic change of probiotics by eliminating native plasmids and reintroducing the recombinants carrying functional genes. Specific insertion sites in the vectors showed significant differences in the expression of fluorescence proteins. Selected integration sites were applied in the de novo synthesis of salicylic acid, leading to a titer of 142.0 ± 6.0 mg/L in a shake flask with good production stability. Additionally, the design successfully realized the biosynthesis of ergothioneine (45 mg/L) by one-step construction. This work expands the application scope of native cryptic plasmids to the easy construction of functional pathways. KEY POINTS: • Cryptic plasmids of EcN were designed to express exogenous genes • Insertion sites with different expression intensities in cryptic plasmids were provided • Target products were stably produced by engineering cryptic plasmids.


Asunto(s)
Antibacterianos , Probióticos , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Plásmidos/genética
9.
J Colloid Interface Sci ; 650(Pt A): 526-540, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37423180

RESUMEN

Tumor microenvironment (TME) stimuli-responsive nanoassemblies are emerging as promising drug delivery systems (DDSs), which acquire controlled release by structural transformation under exogenous stimulation. However, the design of smart stimuli-responsive nanoplatforms integrated with nanomaterials to achieve complete tumor ablation remains challenging. Therefore, it is of utmost importance to develop TME-based stimuli-responsive DDSs to enhance drug-targeted delivery and release at tumor sites. Herein, we proposed an appealing strategy to construct fluorescence-mediated TME stimulus-responsive nanoplatforms for synergistic cancer therapy by assembling photosensitizers (PSs) carbon dots (CDs), chemotherapeutic agent ursolic acid (UA), and copper ions (Cu2+). First, UA nanoparticles (UA NPs) were prepared by self-assembly of UA, then UA NPs were assembled with CDs via hydrogen bonding force to obtain UC NPs. After combining with Cu2+, the resulting particles (named UCCu2+ NPs) exhibited quenched fluorescence and photosensitization due to the aggregation of UC NPs. Upon entering the tumor tissue, the photodynamic therapy (PDT) and the fluorescence function of UCCu2+ were recovered in response to TME stimulation. The introduction of Cu2+ triggered the charge reversal of UCCu2+ NPs, thereby promoting lysosomal escape. Furthermore, Cu2+ resulted in additional chemodynamic therapy (CDT) capacity by reacting with hydrogen peroxide (H2O2) as well as by consuming glutathione (GSH) in cancer cells through a redox reaction, hence magnifying intracellular oxidative stress and enhancing the therapeutic efficacy due to reactive oxygen species (ROS) therapy. In summary, UCCu2+ NPs provided an unprecedented novel approach for improving the therapeutic efficacy through the three-pronged (chemotherapy, phototherapy, and heat-reinforced CDT) attacks to achieve synergistic therapy.


Asunto(s)
Productos Biológicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Neoplasias , Humanos , Cobre/química , Carcinoma Hepatocelular/tratamiento farmacológico , Peróxido de Hidrógeno , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/química , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Glutatión , Microambiente Tumoral
10.
Pest Manag Sci ; 79(10): 3721-3730, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37253683

RESUMEN

BACKGROUND: Natural products are important sources of biopesticides to control plant virus, and flavonoids are identified as promising anti-tobacco mosaic virus (TMV) agents. Since Desmodium caudatum is a rich source of flavonoids, this study focuses on the discovery of the new anti-TMV active flavonoids from D. caudatum and their possible mode of action. RESULTS: Three new (compounds 1-3) and nine known (compounds 4-12) C-alkylated flavonoids were isolated from D. caudatum. To the best of our knowledge, the framework of 1-3 was reported in natural products for the first time. In addition, 1-3, 5, and 6 showed notable anti-TMV activity with inhibition rates in the range of 35.8-64.3% at a concentration of 50 µg/mL, and these rates are higher than that of positive control (with inhibition rates of 34.6% ± 2.8). In addition, the structure-activity relationship study revealed that the (pyrrol-2-yl)methyl moiety on flavone can significantly increases the activity. This result is helpful to find new anti-TMV inhibitors. CONCLUSION: C-Alkylated flavonoids showed potent activities against TMV with multiple modes of actions. The increase of defense-related enzyme activities, up-regulate the expression of defense related genes, down-regulate the expression of Hsp70 protein by inhibiting the related Hsp genes that are involved in tobacco resistance to TMV. By the actions mentioned earlier, the infection of TMV was influenced, thereby achieving the effects of control of TMV. The successful isolation of the earlier-mentioned flavonoids provide the new source of biopesticides to TMV proliferation, and also contribute to the utilization of D. caudatum. © 2023 Society of Chemical Industry.


Asunto(s)
Flavonoides , Virus del Mosaico del Tabaco , Flavonoides/farmacología , Agentes de Control Biológico/farmacología , Relación Estructura-Actividad , Nicotiana , Antivirales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA