Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 413: 131454, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39255946

RESUMEN

Thermophilic anaerobic digestion (AD) offers many benefits for food waste treatment but is seldom adopted in industrial plants due to instability issue, particularly under higher loading conditions. This study thus conducted a 160-day continuous operation of a pilot-scale thermophilic AD system on-site. Results from the experiments showed that the system could operate under relatively lower loading but failed when the loading reached up to 5.69 kg·COD/(m3·d). Volatile fatty acids increased to 6000 mg/L at the corresponding hydraulic retention time of 15 days. Trace elements were then introduced, which restored higher process stability by reducing volatile fatty acids to 400 mg/L. The mass balance and materials decomposition resutls revealed the system's strong resilience. Methanoculleus (92.52 %) and Methanomassiliicoccus (6.55 %) were the dominant methanogens, a phenomenon rarely observed in similar thermophilic systems. This system may tolerate more stressful conditions, as the loading limits had not been reached with the addition of trace elements.

2.
Front Psychol ; 15: 1419920, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39282676

RESUMEN

Background: Self-efficacy, a critical psychological construct representing an individual's belief in their ability to control their motivation, behavior, and social environment. In adolescents, self-efficacy plays a crucial role in mental health, particularly concerning depressive symptoms. Despite substantial research, the complex interplay between self-efficacy and depressive symptoms in adolescents remains incompletely understood. Aims: The aim of this study is to investigate the complex interrelationships between self-efficacy and depressive symptoms in adolescents using psychological network analysis. Methods: The cross-sectional study involved 3,654 adolescents. Self-efficacy was assessed using the General Self-Efficacy Scale (GSES), and depressive symptoms were measured with the Patient Health Questionnaire-9 (PHQ-9). Network analysis, incorporating the least absolute shrinkage and selection operator (LASSO) technique and centrality analysis, constructed and compared self-efficacy networks between depressive symptoms and healthy control groups. Results: Of the 3,654 participants, 560 (15.32%) met criteria for moderate to severe depressive symptoms (PHQ-9 scores ≥10). Among those with depressive symptoms, 373 (66.61%) had moderate, 126 (22.50%) had moderate-severe, and 61 (10.89%) had severe symptoms. Bivariate correlation analyses revealed a significant negative correlation between depressive symptoms and self-efficacy (r = -0.41, p < 0.001). The results of the network analysis showed significant differences in self-efficacy networks between adolescents with and without depressive symptoms (global strength: S = 0.25, p < 0.05). Depressed participants showed a network with reduced global strength, suggesting diminished interconnectedness among self-efficacy items. Specific connections within the self-efficacy network were altered in the presence of depressive symptoms. Bridge analysis revealed that effort-based problem-solving (bridge strengths = 0.13) and suicidal ideation (bridge strengths = 0.09) were the key bridge nodes. Conclusion: Adolescent depressive symptoms significantly impacts the self-efficacy network, resulting in diminished integration of self-efficacy and highlighting the complex interplay between self-efficacy and depressive symptoms. These findings challenge the traditional unidimensional view of self-efficacy and emphasize the need for tailored interventions focusing on unique self-efficacy profiles in adolescents with depressive symptoms.

3.
Immunol Lett ; 269: 106907, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39122094

RESUMEN

The present study focused on the efficacy and role of triptolide (TPL) in relieving symptoms of acute gouty arthritis (AGA) in vivo and in vitro. The effects of TPL in AGA were investigated in monosodium urate (MSU)-treated rat ankles, RAW264.7 macrophages, and neutrophils isolated from mouse peritoneal cavity. Observation of pathological changes in the ankle joint of rats. Enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (RT-qPCR) were performed to detect the expression levels of inflammatory factors and chemokines. The levels of the indicators of macrophage M1/M2 polarization, and the mechanistic targets of Akt and rapamycin complex 2, were determined via western blotting and RT-qPCR. The expression levels of CD86 and CD206 were detected using immunohistochemistry. Neutrophil migration was observed via air pouch experiments in vivo and Transwell cell migration assay in vitro. Myeloperoxidase (MPO) and Neutrophil elastase (NE) release was analyzed by via immunohistochemistry and immunofluorescence. The expression levels of beclin-1, LC3B, Bax, Bcl-2, and cleaved caspase-3 in neutrophils were determined via western blotting and immunofluorescence. Neutrophil apoptosis was detected using the terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Our results suggest that TPL inhibited inflammatory cell infiltration in rat ankle joints and inflammatory factor and chemokine secretion in rat serum, regulated macrophage polarization through the PI3K/AKT signaling pathway, suppressed inflammatory factor and chemokine expression in neutrophils, and inhibited neutrophil migration, neutrophil extracellular trap formation, transitional autophagy, and apoptosis. This suggests that TPL can prevent and treat MSU-induced AGA by regulating macrophage polarization through the PI3K/Akt pathway and modulating neutrophil activity.


Asunto(s)
Artritis Gotosa , Diterpenos , Compuestos Epoxi , Macrófagos , Neutrófilos , Fenantrenos , Ácido Úrico , Animales , Diterpenos/farmacología , Diterpenos/uso terapéutico , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Ratas , Fenantrenos/farmacología , Fenantrenos/uso terapéutico , Artritis Gotosa/tratamiento farmacológico , Artritis Gotosa/inducido químicamente , Artritis Gotosa/metabolismo , Artritis Gotosa/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Compuestos Epoxi/farmacología , Masculino , Modelos Animales de Enfermedad , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Activación de Macrófagos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Activación Neutrófila/efectos de los fármacos , Humanos , Ratas Sprague-Dawley , Movimiento Celular/efectos de los fármacos
4.
Environ Res ; 256: 119225, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38797461

RESUMEN

Sulfadiazine (SDZ) is a kind of anti-degradable antibiotics that is commonly found in wastewater, but its removal mechanism and transformation pathway remain unclear in microalgal systems. This study investigated the effects of initial algae concentration and SDZ-induced stress on microalgal growth metabolism, SDZ removal efficiency, and transformation pathways during Chlorella sp. cultivation. Results showed that SDZ had an inhibitory effect on the growth of microalgae, and increasing the initial algal biomass could alleviate the inhibitory effect of SDZ. When the initial algal biomass of Chlorella sp. was increased to 0.25 g L-1, the SDZ removal rate could reach 53.27%-89.07%. The higher the initial algal biomass, the higher the SOD activity of microalgae, and the better the protective effect on microalgae, which was one of the reasons for the increase in SDZ removal efficiency. Meanwhile, SDZ stress causes changes in photosynthetic pigments, lipids, total sugars and protein content of Chlorella sp. in response to environmental changes. The main degradation mechanisms of SDZ by Chlorella sp. were biodegradation (37.82%) and photodegradation (23%). Most of the degradation products of SDZ were less toxic than the parent compound, and the green algae were highly susceptible to SDZ and its degradation products. The findings from this study offered valuable insights into the tradeoffs between accumulating microalgal biomass and antibiotic toxic risks during wastewater treatment, providing essential direction for the advancement in future research and full-scale application.


Asunto(s)
Antibacterianos , Biodegradación Ambiental , Chlorella , Microalgas , Sulfadiazina , Contaminantes Químicos del Agua , Chlorella/efectos de los fármacos , Chlorella/metabolismo , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/toxicidad , Microalgas/efectos de los fármacos , Microalgas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Biomasa , Aguas Residuales/química
5.
Bioresour Technol ; 403: 130893, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795923

RESUMEN

This study investigated the performance of combined nanobubble water (NW) and digestate in the soaking hydrolysis process. Two types of NW (CO2NW and O2NW) with digestate were used to soak rice straw for 1, 2, 3, 5, and 7 days. During soaking process, the volatile fatty acids (VFA) concentration in the treatment with O2NW and digestate for 3 days (O2NW-3 d) reached 7179.5 mg-HAc/L. Moreover, the highest specific methane yield (SMY) obtained in this treatment could reach 336.7 NmL/gVS. Although the addition of NW did not significantly increase SMY from digestate soaking, NW could accelerate the rate of methane production and reduce digestion time of T80. The enrichment of Enterobacter in the soaking process was observed when using CO2NW and O2NW as soaking solutions which played important roles in VFA production. This study provides a new insight into environment-friendly enhanced crop straw pretreatment, combining NW and digestate soaking hydrolysis.


Asunto(s)
Ácidos Grasos Volátiles , Metano , Oryza , Agua , Oryza/química , Hidrólisis , Agua/química , Metano/metabolismo , Residuos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38483763

RESUMEN

Whether advanced biological waste treatment technologies, such as hydrothermal pretreatment (HTP) integrated anaerobic digestion (AD), could enhance the removal of different antibiotics remains unclear. This study investigated the outcome of antibiotics and methane productivity during pig manure treatment via HTP, AD, and HTP + AD. Results showed improved removal efficiency of sulfadiazine (SDZ), oxytetracycline (OTC), and enrofloxacin (ENR) with increased HTP temperatures (70, 90, 120, 150, and 170 °C). OTC achieved the highest removal efficiency of 86.8% at 170 °C because of its high sensitivity to heat treatment. For AD, SDZ exhibited resistance with a removal efficiency of 52.8%. However, OTC and ENR could be removed completely within 30 days. When HTP was used prior to AD, OTC and ENR could achieve complete removal. However, residual SDZ levels reduced to 20% and 16% at 150 and 170 °C, respectively. The methanogenic potential showed an overall upward trend as the HTP temperature increased. Microbial analysis revealed the antibiotics-induced enrichment of specific microorganisms during AD. Firmicutes were the dominant bacterial phylum, with their abundance positively correlated with the addition of antibiotics. Methanobacterium and Methanosarcina emerged as the dominant archaea that drove methane production during AD. Thus, HTP can be a potential pretreatment before AD to reduce antibiotic-related risks in manure waste handling.

7.
Environ Sci Pollut Res Int ; 31(12): 18723-18736, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38349498

RESUMEN

While thermal hydrolysis technology is commonly employed for sewage sludge treatment in extensive wastewater treatment facilities, persistent challenges remain, including issues such as ammonia-induced digestive inhibition and reduced productivity stemming from nutrient deficiency within the hydrothermal sludge. In this study, the effects of hydrothermal sludge-to-food waste mixing ratios and fermentation temperatures on anaerobic co-digestion were systematically investigated through a semi-continuous experiment lasting approximately 100 days. The results indicated that anaerobic co-digestion of hydrothermal sludge and food waste proceeded synergistically at any mixing ratio, and the synergistic effect is mainly attributed to the improvement of carbohydrate removal and digestive system stability. However, thermophilic digestion did not improve the anaerobic performance and methane yield. On the contrary, mesophilic digestion performed better in terms of organic matter removal, especially in the utilization of soluble carbohydrates, soluble proteins, and VFAs. Microbial community analysis revealed that the transition from mesophilic to thermophilic anaerobic co-digestion prompts changes in the methane-producing pathways. Specifically, the transition entails a gradual shift from pathways involving acetoclastic and hydrogenotrophic methanogenesis to a singular hydrogenotrophic methanogenesis pathway. This shift is driven by thermodynamic tendencies, as reflected in Gibbs free energy, as well as environmental factors like ammonia nitrogen and volatile fatty acids. Lastly, it is worth noting that the introduction of food waste did lead to a reduction in cake solids following dewatering. Nevertheless, it was observed that thermophilic digestion had a positive impact on dewatering performance.


Asunto(s)
Eliminación de Residuos , Aguas del Alcantarillado , Alimento Perdido y Desperdiciado , Anaerobiosis , Alimentos , Amoníaco , Metano/metabolismo , Digestión , Reactores Biológicos
8.
Environ Res ; 244: 117894, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38092236

RESUMEN

Numerous efforts have been made to enhance the performance of anaerobic digestion (AD) for accelerating renewable energy generation, however, it remains unclear whether the intensified measures could enhance the proliferation and transmissions of antibiotic resistance genes (ARGs) in the system. This study assessed the impact of an innovative pig manure AD process, which includes hydrothermal pretreatment (HTP) and a two-stage configuration with separated acidogenic and methanogenic phases, on biomethane (CH4) production and ARGs dynamics. Results showed that HTP significantly increase CH4 production from 0.65 to 0.75 L/L/d in conventional single-stage AD to 0.82 and 0.91 L/L/d in two-stage AD. This improvement correlated with a rise in the relative abundance of Methanosarcina, a key methanogenesis microorganism. In the two-stage AD, the methanogenic stage offered an ideal environment for methanogens growth, resulting in substantially faster and higher CH4 production by about 10% compared to single-stage AD. Overall, the combined use of HTP and the two-stage AD configuration enhanced CH4 production by 40% compared to traditional single-stage AD. The abundance and diversity of ARGs were significantly reduced in the acidogenic reactors after HTP. However, the ARGs levels increased by about two times in the following methanogenesis stage and reached similar or higher levels than in single stage AD. The erm(F), erm(G), ant(6)-Ia, tet(W), mef(A) and erm(B) were the six main ARGs with significant differences in relative abundances in various treatments. The two-stage AD mode could better remove sul2, but it also had a rebound which elevated the risk of ARGs to the environment and human health. Network analysis identified pH and TVFAs as critical factors driving microbial communities and ARG proliferation in the new AD process. With the results, this study offers valuable insights into the trade-offs between AD performance enhancement and ARG-related risks, pinpointing essential areas for future research and practical improvements.


Asunto(s)
Antibacterianos , Microbiota , Humanos , Animales , Porcinos , Antibacterianos/farmacología , Estiércol , Farmacorresistencia Microbiana/genética , Metano , Anaerobiosis , Genes Bacterianos
9.
Toxics ; 11(12)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38133410

RESUMEN

Cadmium (Cd) contamination in the soil potentially hampers microbial biomass and adversely affects their services such as decomposition and mineralization of organic matter. It can reduce nitrogen (N) metabolism and consequently affect plant growth and physiology. Further, Cd accumulation in plants can pose health risks through vegetable consumption. Here, we investigated consequences of Cd contamination on fertilizer value and associated health risks following the application of biogas residues (BGR) to various soil types. Our results indicate that the application of BGR to all soil types significantly increased dry matter (DM) yield and N uptake. However, the Cd contamination negatively affected DM yield and N recovery from BGR in a dose-dependent manner. Organic N mineralization from BGR also decreased in Cd-contaminated soils. The highest DM yield and N recovery were recorded in sandy soil, whereas the lowest values were observed in clay soil. Cadmium was accumulated in spinach, and health risk index (HRI) associated with its dietary intake revealed that consuming spinach grown in Cd-contaminated soil, with or without BGR, is unsafe. Among the soil types, values of daily intake of metals (DIM) and HRI were lowest in clay soil and highest in sandy soil. However, the application of BGR curtailed HRI across all soil types. Notably, the application of BGR alone resulted in HRI values < 1, which are under the safe limit. We conclude that soil contamination with Cd reduces fertilizer value and entails implications for human health. However, the application of BGR to the soil can decrease Cd effects.

10.
Chemosphere ; 344: 140370, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37802480

RESUMEN

A novel system integrating an in-situ and ex-situ power-to-gas (PtG) system was developed in the current study. A continuous stirred-tank reactor (CSTR) was operated using cattle manure as substrate at mesophilic temperature (37 °C ± 2 °C). The CH4 content in the biogas was upgraded to above 95% by H2 injection, which meets the highest criteria for grid injection without requiring CO2 removal. Furthermore, the bio-nature gas production was promoted by external CO2 and H2 injection. The volumetric methane production rate (VMPR) was significantly increased by 739% from 117.4 mL L-1·d-1 to 985 mL⋅L-1⋅d-1, which is higher than in other studies. Meanwhile, the volumetric biogas production rate (VBPR) was increased by 36.9% by H2 injection, increasing the conversion efficiency (82.56%) of the chemical oxygen demand (COD) to CH4. A significant increase in the specific methanogenic activity of dissolved hydrogen (SMA(Hdissolved)) and the enrichment in hydrogenotrophic methanogens (Methanobacterium) demonstrate that the CH4 production pathway was converted from acetoclastic methanogenesis (AM) pathway to hydrogenotrophic methanogenesis (HM) pathway. It is postulated that the change in proportion of different pathways of the CH4 production was caused by the strengthening of key enzymes (coenzyme F420 hydrogenase and coenzyme-B sulfoethylthiotransferase) by H2 injection. The integrated system represents a promising approach to achieve simultaneous CO2 emission reduction and bio-natural gas production.


Asunto(s)
Reactores Biológicos , Dióxido de Carbono , Animales , Bovinos , Reactores Biológicos/microbiología , Dióxido de Carbono/metabolismo , Gas Natural , Biocombustibles , Metano/metabolismo , Hidrógeno/metabolismo , Anaerobiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA