Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Histol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898139

RESUMEN

Perivascular adipose tissue (PVAT) is an adipose layer, surrounding blood vessels, with a local modulatory role. Interleukin-10 (IL-10) has been shown to modulate vascular tissue. This study aimed to characterize the endogenous role of IL-10 in vascular remodeling, and PVAT phenotyping. Thoracic aortic segments from control (C57BL/6J) and IL-10 knockout (IL-10-/-) male mice were used. Analyzes of aorta/PVAT morphometry, and elastin, collagen and reticulin deposition were performed. Tissue uncoupling protein 1 (UCP1) was accessed by Western blotting. Endogenous absence of IL-10 reduced total PVAT area (p = 0.0310), and wall/lumen ratio (p = 0.0024), whereas increased vascular area and thickness (p < 0.0001). Total collagen deposition was augmented in IL-10-/-, but under polarized light, the reduction of collagen-I (p = 0.0075) and the increase of collagen-III (p = 0.0055) was found, simultaneously with reduced elastic fibers deposition (p = 0.0282) and increased deposition of reticular fibers (p < 0.0001). Adipocyte area was augmented in the IL-10 absence (p = 0.0225), and UCP1 expression was reduced (p = 0.0420). Moreover, relative frequency of white adipose cells and connective tissue was augmented in IL-10-/- (p < 0.0001), added to a reduction in brown adipose cells (p < 0.0001). Altogether, these data characterize aorta PVAT from IL-10-/- as a white-like adipocyte phenotype. Endogenous IL-10 prevents vascular remodeling and favors a brown-like adipocyte phenotype, suggesting a modulatory role for IL-10 in PVAT plasticity.

2.
Hypertension ; 81(7): 1411-1423, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38686582

RESUMEN

Cytokines play a crucial role in the structure and function of blood vessels in hypertension. Hypertension damages blood vessels by mechanisms linked to shear forces, activation of the renin-angiotensin-aldosterone and sympathetic nervous systems, oxidative stress, and a proinflammatory milieu that lead to the generation of neoantigens and damage-associated molecular patterns, ultimately triggering the release of numerous cytokines. Damage-associated molecular patterns are recognized by PRRs (pattern recognition receptors) and activate inflammatory mechanisms in endothelial cells, smooth muscle cells, perivascular nerves, and perivascular adipose tissue. Activated vascular cells also release cytokines and express factors that attract macrophages, dendritic cells, and lymphocytes to the blood vessels. Activated and differentiated T cells into Th1, Th17, and Th22 in secondary lymphoid organs migrate to the vessels, releasing specific cytokines that further contribute to vascular dysfunction and remodeling. This chronic inflammation alters the profile of endothelial and smooth muscle cells, making them dysfunctional. Here, we provide an overview of how cytokines contribute to hypertension by impacting the vasculature. Furthermore, we explore clinical perspectives about the modulation of cytokines as a potential therapeutic intervention to specifically target hypertension-linked vascular dysfunction.


Asunto(s)
Citocinas , Hipertensión , Humanos , Hipertensión/inmunología , Hipertensión/fisiopatología , Hipertensión/metabolismo , Citocinas/metabolismo , Citocinas/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/fisiopatología , Animales , Endotelio Vascular/fisiopatología , Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...