Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 901157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875531

RESUMEN

Plant growth-promoting endophytic microorganisms in agriculture have been expanding in Brazil and are an excellent strategy to face the challenges of current agriculture, such as reducing production costs with fewer environmental impacts, without detriment to productivity. However, little is known about the factors that can affect the colonization of endophytic such as inoculant concentration and mineral fertilization. The present study aimed to evaluate the influence of these factors on soybean and maize crops and found that for soybean crops, the highest Bacillus subtilis concentration of 1 × 104 and 1 × 1010 CFU ml-1 promoted the highest number of recovered bacteria, when there was no mineral fertilization. However, mineral fertilization limited the number of recovered bacteria, suggesting that mineral fertilization interferes with endophytic colonization. For maize crops, the highest number of recovered bacteria occurred from the concentration of 1 × 106 CFU ml-1, not differing from the highest concentrations. A mineral fertilization dose of 25% promoted the greatest B. subtilis recovery compared to the other treatments. Regarding plant development, the highest microbial inoculum concentrations did not necessarily promote greater positive growth promotion effects compared to the concentration of 1 × 104 CFU ml-1 for both crops. The results also suggest that the higher number of endophytic bacteria recovered in the plant does not necessarily affect plant growth in the same proportion. For soybean plants, there is a strong tendency that with the increase in the B. subtilis inoculant concentration, the need for mineral fertilization doses to achieve the same plant development is consequently increased, and inoculations with 1 × 105 and 1 × 106 CFU ml-1 with fertilization doses between 44% and 62% are the ideal combinations for greater plant development. In maize plants, the best growth promotion response (height) was obtained using inoculation concentration of 1 × 102 and 1 × 1010 CFU ml-1, increasing according to the increase in fertilization doses. The findings suggest, for soybean crop, that these high inoculum concentrations required more photosynthetic metabolites from the plants and more nutrients from the soil. Thus, the need for mineral fertilization for plant growth must be increased.

2.
Front Microbiol ; 13: 900980, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35875541

RESUMEN

Soybean crops are of great economic importance worldwide and in Brazil. This crop is a commodity that provides large amounts of financial resources to the country. Soybean productivity is influenced by several biotic and abiotic factors, and most of these factors cannot be controlled by agricultural practices. Due to the soybean cultivars used and their required yields, the soybean crop, similar to other agriculturally important crops, requires large amounts of mineral fertilizers. There are several microorganisms that colonize soybean plant roots without causing symptoms or damage. These microorganisms that colonize plant tissues are called endophytes and can often promote plant growth and development. Little is known about the factors that influence endophyticism. The aim of the present study was to evaluate whether Bacillus subtilis inoculant concentrations and levels of mineral fertilization recommended for the crop have any influence on the endophytic microbiome of soybean plant roots. The results show that B. subtilis inoculations did not affect the endophytic community of the roots; however, the evaluation of the microbial community structure according to the alpha diversity metrics observed richness, Chao1 index, Shannon index and Simpson index showed that microbial diversity of endophytes was higher at fertilization levels of 50 and 100%, with a significant difference (p < 0.05) between 0 and 50% and 0 and 100% fertilization.

3.
Front Microbiol ; 12: 737385, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721334

RESUMEN

There are no studies in literature on the effect of inoculant concentrations on plant growth promotion. Therefore, in the present study, two experiments were carried out, one under pot conditions and the other in the field with cotton crop, in order to verify the effect of Aspergillus and Bacillus concentrations on the biometric and nutritional parameters of plant and soil, in addition to yield. The pot experiment evaluated the effect of different concentrations, ranging from 1 × 104 to 1 × 1010 colony-forming units per milliliter (CFU mL-1) of microorganisms Bacillus velezensis (Bv188), Bacillus subtilis (Bs248), B. subtilis (Bs290), Aspergillus brasiliensis (F111), Aspergillus sydowii (F112), and Aspergillus sp. versicolor section (F113) on parameters plant growth promotion and physicochemical and microbiological of characteristics soil. Results indicated that the different parameters analyzed are influenced by the isolate and microbial concentrations in a different way and allowed the selection of four microorganisms (Bs248, Bv188, F112, and F113) and two concentrations (1 × 104 and 1 × 1010 CFU mL-1), which were evaluated in the field to determine their effect on yield. The results show that, regardless of isolate, inoculant concentrations promoted the same fiber and seed cotton yield. These results suggest that lower inoculant concentrations may be able to increase cotton yield, eliminating the need to use concentrated inoculants with high production cost.

4.
Front Microbiol ; 12: 719653, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777275

RESUMEN

Plant growth-promoting bacteria (PGPB) and humic substances (HSs) are promising options for reducing the use of pesticides and mineral fertilizers. Although many studies have shown the effects of PGPB and HSs separately, little information is available on plant responses to the combined application of these biostimulants despite the great potential for the simultaneous action of these biological inputs. Thus, the objective of this review is to present an overview of scientific studies that addressed the application of PGPB and HSs to different crops. First, we discuss the effect of these biostimulants on biological nitrogen fixation, the various effects of the inoculation of beneficial bacteria combined with the application of HSs on promoting the growth of nonleguminous plants and how this combination can increase bacterial colonization of plant hosts. We also address the effect of PGPB and HSs on plant responses to abiotic stresses, in addition to discussing the role of HSs in protecting plants against pathogens. There is a lack of studies that address the role of PGPB + HSs in biocontrol. Understanding the factors involved in the promotion of plant growth through the application of PGPB and HSs can assist in the development of efficient biostimulants for agricultural management. This approach has the potential to accelerate the transition from conventional cultivation to sustainable agrosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA