Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Eur J Med Res ; 29(1): 365, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39004734

RESUMEN

BACKGROUND: Advanced Hybrid Closed-Loop system (AHCL) has profoundly changed type 1 diabetes therapy. This study primarily aimed to assess the impact on Glycemia Risk Index (GRI) and other continuous glucose monitoring (CGM) metrics when switching from one of four insulin strategies to AHCL in type 1 adult patients. METHODS: A single-center, retrospective pre/post observational study; 198 patients (age 44.4 ± 12.7 years, 115 females/83 males, diabetes duration 24.7 ± 11.6 years, HbA1c 7.4 ± 1%), treated with different insulin therapies (MDI, CSII, SAP with PLGS, HCL) were assessed before and after switching to an AHCL (MiniMed 780G, Diabeloop Roche, Tandem Control-IQ) at 1, 3, 6, and 12 months. Mixed-effects multivariable regression models were used to estimate the mean pre/post variations at different time points, adjusted for potential confounders. RESULTS: A month after the switch, there was an improvement in CGM metrics and HbA1c for all patients: GRI -10.7, GMI -0.27%, CV -2.1%, TAR>250 -3.7%, TAR180-250 -5.6%, TIR + 9.7%, HbA1c -0.54% (all p < 0.001). This improvement was maintained throughout the observational period (at 3, 6, and 12 months, with all p-values < 0.001). When improvements across the 780, Diabeloop, and Tandem CIQ devices were compared: Diabeloop demonstrated significantly better performance in terms of GRI, GMI, CV, TAR>250 at T1 (for all p < 0.01); 780 recorded highest average decrease in TAR180-250 (p = 0.020), while Tandem achieved the most significant reduction in TBR54-69 (p = 0.004). CONCLUSIONS: Adopting an AHCL leads to a rapid and sustained improvement in GRI and other parameters of metabolic control for up to a year, regardless of prior insulin therapies, baseline conditions or brands.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 1 , Sistemas de Infusión de Insulina , Insulina , Humanos , Masculino , Femenino , Adulto , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/sangre , Glucemia/análisis , Persona de Mediana Edad , Estudios Retrospectivos , Insulina/administración & dosificación , Insulina/uso terapéutico , Automonitorización de la Glucosa Sanguínea/métodos , Hemoglobina Glucada/análisis , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/uso terapéutico
2.
New Microbiol ; 47(1): 38-46, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700882

RESUMEN

The shortage of organs for human transplantation is a topic of extreme interest, and xenotransplantation with porcine organs has been recognized as a promising solution. However, the potential spillover linked to infectious agents present in pigs remains a concern. Among these, Pig Endogenous Retroviruses (PERVs), whose proviral DNAs are integrated in the genome of all pig breeds, represent an extremely important biological risk. This study aims to evaluate PERVs distribution in several swine cell lines and samples of domestic and feral pigs. Moreover, the capacity of PERVs to infect human and non-human primate cells and to integrate in the cellular genome was tested by Real-Time PCR and by Reverse Transcriptase assay. Results indicated a widespread diffusion of PERVs both in cell lines and samples analysed: the viral genome was found in all the established cell lines, in 40% of the primary cell lines and in 60% of the tissue samples tested. The assays indicated that the virus can be transmitted from porcine to human cells: in the specific case, infected NSK and NPTr cells allow passage to human 293 and MRC-5 cells with active production of the virus demonstrable via PCR and RT assay. In light of these aspects and also the lack of studies on PERVs, it appears clear that there are still many questions to be clarified, also by means of future studies, before xenotransplantation can be considered microbiologically safe.


Asunto(s)
Retrovirus Endógenos , Animales , Retrovirus Endógenos/genética , Retrovirus Endógenos/aislamiento & purificación , Porcinos , Humanos , Línea Celular , Infecciones por Retroviridae/veterinaria , Infecciones por Retroviridae/virología , Infecciones por Retroviridae/transmisión
3.
Biomedicines ; 11(8)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37626611

RESUMEN

The process of identifying and approving a new drug is a time-consuming and expensive procedure. One of the biggest issues to overcome is the risk of hepatotoxicity, which is one of the main reasons for drug withdrawal from the market. While animal models are the gold standard in preclinical drug testing, the translation of results into therapeutic intervention is often ambiguous due to interspecies differences in hepatic metabolism. The discovery of human induced pluripotent stem cells (hiPSCs) and their derivatives has opened new possibilities for drug testing. We used mesenchymal stem cells and hepatocytes both derived from hiPSCs, together with endothelial cells, to miniaturize the process of generating hepatic organoids. These organoids were then cultivated in vitro using both static and dynamic cultures. Additionally, we tested spheroids solely composed by induced hepatocytes. By miniaturizing the system, we demonstrated the possibility of maintaining the organoids, but not the spheroids, in culture for up to 1 week. This timeframe may be sufficient to carry out a hypothetical pharmacological test or screening. In conclusion, we propose that the hiPSC-derived liver organoid model could complement or, in the near future, replace the pharmacological and toxicological tests conducted on animals.

4.
Virology ; 579: 38-45, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599198

RESUMEN

Due to the recurrent pandemic outbreaks that occurred during the last century, Influenza A viruses are considered a serious potential danger to human health. Among the innate immune pathways in eukaryotes, RNA interference plays a significant role in the interaction between viruses and host cells. RNA interference is addressed by small dsRNA molecules produced by the host itself (miRNAs, i.e. "micro-RNAs") but can be triggered also by the administration of exogenous short RNAs (siRNAs, "short interfering RNAs"). In this work, artificial siRNA pools targeting NP and PB genomic regions of the Influenza virus were produced in engineered Escherichia coli, adapting a published protocol. In a MDCK cell in vitro model, these preparations were challenged against reporter vectors bearing viral genomic sequences. A strong and specific RNA interference activity was observed, and the details of this action were indagated.


Asunto(s)
Virus de la Influenza A , MicroARNs , Escherichia coli/genética , Escherichia coli/metabolismo , Genómica , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Células de Riñón Canino Madin Darby , Animales , Perros
5.
ACS Biomater Sci Eng ; 9(1): 211-229, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36525369

RESUMEN

Drug-induced hepatotoxicity is a leading cause of clinical trial withdrawal. Therefore, in vitro modeling the hepatic behavior and functionalities is not only crucial to better understand physiological and pathological processes but also to support drug development with reliable high-throughput platforms. Different physiological and pathological models are currently under development and are commonly implemented both within platforms for standard 2D cultures and within tailor-made chambers. This paper introduces Hep3Gel: a hybrid alginate-extracellular matrix (ECM) hydrogel to produce 3D in vitro models of the liver, aiming to reproduce the hepatic chemomechanical niche, with the possibility of adapting its shape to different manufacturing techniques. The ECM, extracted and powdered from porcine livers by a specifically set-up procedure, preserved its crucial biological macromolecules and was embedded within alginate hydrogels prior to crosslinking. The viscoelastic behavior of Hep3Gel was tuned, reproducing the properties of a physiological organ, according to the available knowledge about hepatic biomechanics. By finely tuning the crosslinking kinetics of Hep3Gel, its dualistic nature can be exploited either by self-spreading or adapting its shape to different culture supports or retaining the imposed fiber shape during an extrusion-based 3D-bioprinting process, thus being a shape-shifter hydrogel. The self-spreading ability of Hep3Gel was characterized by combining empirical and numerical procedures, while its use as a bioink was experimentally characterized through rheological a priori printability evaluations and 3D printing tests. The effect of the addition of the ECM was evident after 4 days, doubling the survival rate of cells embedded within control hydrogels. This study represents a proof of concept of the applicability of Hep3Gel as a tool to develop 3D in vitro models of the liver.


Asunto(s)
Matriz Extracelular , Hígado , Animales , Porcinos , Impresión Tridimensional , Hidrogeles , Alginatos
6.
Diabetol Metab Syndr ; 14(1): 168, 2022 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371199

RESUMEN

INTRODUCTION: The role of glycemic control, both prior and during hospitalization, on mortality from COVID-19 in diabetic patients is debated. Furthermore, it is not clear whether hyperglycemia has a direct effect or requires inflammatory mechanisms. OBJECTIVE: To identify predictors of clinical outcomes (in-hospital mortality, length of hospitalization, respiratory failure, need for intensive care), considering hyperglycemia, inflammation markers and clinical history. METHODS: Retrospective observational study of 291 diabetic patients hospitalized with COVID-19 in the Spedali Civili di Brescia from February 1th 2020 to March 31th 2021, with also outpatient electronic records. Glucose, inflammatory parameters, creatinine were collected within 24 h after admission to the hospital. A causal mediation analysis allowed the estimation of the direct and indirect effects of hyperglycemia on mortality. RESULTS: Glucose at admission ≥ 165 mg/dL and reduced renal function were associated with an increased risk of in-hospital mortality and length of hospitalization (all p < 0.001), while an increase in inflammatory parameters was significantly associated with an increased risk of all outcomes. High basophil count was associated with reduced mortality (p < 0.001). Hyperglycemia had a direct effect on mortality (p < 0.001); the indirect, through inflammatory markers, was significant only for absolute neutrophil count, C-Reactive protein and procalcitonin (p = 0.007, p = 0.029, p = 0.042). Patients with microvascular complications and with chronic kidney disease showed higher mortality (p = 0.03, p = 0.01). CONCLUSIONS: Hyperglycemia at admission, renal function and inflammatory parameters were found to be predictors of in-hospital mortality, while an increased basophil count was protective. Hyperglycemia had a direct effect on mortality, the indirect effect was only through few markers and markedly lower than the direct one.

7.
Front Physiol ; 13: 836480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35936888

RESUMEN

Recently, research is undergoing a drastic change in the application of the animal model as a unique investigation strategy, considering an alternative approach for the development of science for the future. Although conventional monolayer cell cultures represent an established and widely used in vitro method, the lack of tissue architecture and the complexity of such a model fails to inform true biological processes in vivo. Recent advances in cell culture techniques have revolutionized in vitro culture tools for biomedical research by creating powerful three-dimensional (3D) models to recapitulate cell heterogeneity, structure and functions of primary tissues. These models also bridge the gap between traditional two-dimensional (2D) single-layer cultures and animal models. 3D culture systems allow researchers to recreate human organs and diseases in one dish and thus holds great promise for many applications such as regenerative medicine, drug discovery, precision medicine, and cancer research, and gene expression studies. Bioengineering has made an important contribution in the context of 3D systems using scaffolds that help mimic the microenvironments in which cells naturally reside, supporting the mechanical, physical and biochemical requirements for cellular growth and function. We therefore speak of models based on organoids, bioreactors, organ-on-a-chip up to bioprinting and each of these systems provides its own advantages and applications. All of these techniques prove to be excellent candidates for the development of alternative methods for animal testing, as well as revolutionizing cell culture technology. 3D systems will therefore be able to provide new ideas for the study of cellular interactions both in basic and more specialized research, in compliance with the 3R principle. In this review, we provide a comparison of 2D cell culture with 3D cell culture, provide details of some of the different 3D culture techniques currently available by discussing their strengths as well as their potential applications.

8.
Res Vet Sci ; 152: 134-149, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35969916

RESUMEN

Nanoscience and nanotechnologies have recently gained importance in several fields, such as industry and medicine. A big issue of the increasing application of nanomaterials is the poor literature regarding their potential toxicity in humans and animals. Recently, adult stem cells have been proposed as putative targets of nanoparticles (NPs). This study aims to investigate the effects of zerovalent-metallic NPs on isolated and amplified equine Adipose tissue derived Mesenchymal Stem Cells (eAdMSCs). Cells were treated with Cobalt (Co-), Iron (Fe-), and Nickel (Ni-) nanoparticles (NPs) at different concentrations and were characterized for the cytotoxic and genotoxic effects of exposure. Treatment with NPs resulted in reduced cell viability and proliferative capability in comparison with untreated cells. However, this did not influence eAdMSCs potency, as treated cells were able to differentiate towards the adipogenic and osteogenic lineages. Ni- and Fe-NPs showed cytoplasmic localization, while Co-NPs entered the nucleus and mitochondria, suggesting a potential genotoxic activity. Regarding p53 expression, it was enhanced in the first 48 h after treatments, with a drastic reduction of expression within 72 h. Higher p53 expression was reported in the case of Co-NP treatment, suggesting the tumorigenic potential of these NPs. Telomerase activity was enhanced by Fe- and Ni-NP treatments in a concentration- and time-dependent way. This was not true for Co-NP treated samples, suggesting a reduced replicative capacity of eAdMSCs upon Co-NP exposure. The present study is a preliminary investigation of the influence exerted by NPs on eAdMSC physiological activity in terms of cytotoxic and genotoxic effects. The present results revealed eAdMSC physiology to be strongly influenced by NPs in a dose-, time- and NP-dependent way.


Asunto(s)
Células Madre Mesenquimatosas , Nanopartículas del Metal , Nanopartículas , Humanos , Caballos , Animales , Proteína p53 Supresora de Tumor , Nanopartículas del Metal/toxicidad , Supervivencia Celular , Hierro
9.
Animals (Basel) ; 11(11)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34828003

RESUMEN

In recent years, mesenchymal stromal cells (MSCs) have shown promise as a therapy in treating musculoskeletal diseases, and it is currently believed that their therapeutic effect is mainly related to the release of proteins and extracellular vesicles (EVs), known as secretome. In this work, three batches of canine MSC-secretome were prepared by standardized processes according to the current standard ISO9001 and formulated as a freeze-dried powder named Lyosecretome. The final products were characterized in protein and lipid content, EV size distribution and tested to ensure the microbiological safety required for intraarticular injection. Lyosecretome induced the proliferation of adipose tissue-derived canine MSCs, tenocytes, and chondrocytes in a dose-dependent manner and showed anti-elastase activity, reaching 85% of inhibitory activity at a 20 mg/mL concentration. Finally, to evaluate the safety of the preparation, three patients affected by bilateral knee or elbow osteoarthritis were treated with two intra-articular injections (t = 0 and t = 40 days) of the allogeneic Lyosecretome (20 mg corresponding 2 × 106 cell equivalents) resuspended in hyaluronic acid in one joint and placebo (mannitol resuspended in hyaluronic acid) in the other joint. To establish the safety of the treatment, the follow-up included a questionnaire addressed to the owner and orthopaedic examinations to assess lameness grade, pain score, functional disability score and range of motion up to day 80 post-treatment. Overall, the collected data suggest that intra-articular injection of allogeneic Lyosecretome is safe and does not induce a clinically significant local or systemic adverse response.

10.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200627

RESUMEN

In the last decades, it has been demonstrated that the regenerative therapeutic efficacy of mesenchymal stromal cells is primarily due to the secretion of soluble factors and extracellular vesicles, collectively known as secretome. In this context, our work described the preparation and characterization of a freeze-dried secretome (Lyosecretome) from adipose tissue-derived mesenchymal stromal cells for the therapy of equine musculoskeletal disorder. An intraarticular injectable pharmaceutical powder has been formulated, and the technological process has been validated in an authorized facility for veterinary clinical-use medicinal production. Critical parameters for quality control and batch release have been identified regarding (i) physicochemical properties; (ii) extracellular vesicle morphology, size distribution, and surface biomarker; (iii) protein and lipid content; (iv) requirements for injectable pharmaceutical dosage forms such as sterility, bacterial endotoxin, and Mycoplasma; and (v) in vitro potency tests, as anti-elastase activity and proliferative activity on musculoskeletal cell lines (tenocytes and chondrocytes) and mesenchymal stromal cells. Finally, proteins putatively responsible for the biological effects have been identified by Lyosecretome proteomic investigation: IL10RA, MXRA5, RARRES2, and ANXA1 modulate the inflammatory process RARRES2, NOD1, SERPINE1, and SERPINB9 with antibacterial activity. The work provides a proof-of-concept for the manufacturing of clinical-grade equine freeze-dried secretome, and prototypes are now available for safety and efficacy clinical trials in the treatment of equine musculoskeletal diseases.

11.
Biotechniques ; 70(6): 319-326, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34024160

RESUMEN

Routine cell culture demands the use of animal-derived products, mainly fetal bovine serum and swine or bovine trypsin. According to the 3Rs principle and to the European Centre for the Validation of Alternative Methods, animal-free substitutes are strongly recommended for in vitro methods. In this study, the HEp-2 cell line was adapted to different totally animal-free culture systems, such as a serum-free complete medium (VP-SFM), human platelet lysate and a synthetic trypsin (TrypLE™ Express); afterward, cell growth was assessed with the xCELLigence instrument. Animal-free products provided promising results, with performances similar or preferable to the common reagents; therefore their use could be encouraged for both ethical and technical advantages.


Asunto(s)
Técnicas de Cultivo de Célula , Medio de Cultivo Libre de Suero , Línea Celular , Proliferación Celular , Humanos , Tripsina
12.
Res Vet Sci ; 132: 386-392, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32755753

RESUMEN

This study dealt with the toxicity of inactivated bacteria intended for veterinary autogenous vaccines toward a suitable control assay. Two in vitro methods were used. The [3-(4, 5 -dimethylthiazol-2-yl) -2,5 -diphenyltetrazolium bromide] (MTT) test, based on the metabolic reaction of a tetrazolium salt in vital cells, was adopted on the basis of previous positive results. The Interleukin (IL)-1 beta release assay on monocyte-derived pig macrophages was carried out for comparative purposes, to evaluate the possible role of the inflammatory response. MTT and IL-1 beta responses showed a significant correlation (P < 0.05) at defined test dilutions of bacterial antigens, whereas no correlation was demonstrated using MTT responses normalized on bacterial cell concentration. Furthermore, the toxic effects shown in the MTT test were positively correlated to the extracellular protein content. On the whole, the above results could be a useful basis for the development of a toxicity assay on inactivated bacterial vaccines. Also, our data point at bacterial autolysis as a major component underlying toxicity.


Asunto(s)
Vacunas Bacterianas/toxicidad , Macrófagos/efectos de los fármacos , Sus scrofa/fisiología , Pruebas de Toxicidad , Animales , Técnicas In Vitro , Sales de Tetrazolio/química , Tiazoles/química , Vacunas de Productos Inactivados/toxicidad
13.
Cells ; 9(6)2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545382

RESUMEN

Regenerative medicine aims to restore the normal function of diseased or damaged cells, tissues, and organs using a set of different approaches, including cell-based therapies. In the veterinary field, regenerative medicine is strongly related to the use of mesenchymal stromal cells (MSCs), which belong to the body repair system and are defined as multipotent progenitor cells, able to self-replicate and to differentiate into different cell types. This review aims to take stock of what is known about the MSCs and their use in the veterinary medicine focusing on clinical reports on dogs and horses in musculoskeletal diseases, a research field extensively reported in the literature data. Finally, a perspective regarding the use of the secretome and/or extracellular vesicles (EVs) in the veterinary field to replace parental MSCs is provided. The pharmaceuticalization of EVs is wished due to the realization of a Good Manufacturing Practice (GMP product suitable for clinical trials.


Asunto(s)
Células Madre Mesenquimatosas/citología , Enfermedades Musculoesqueléticas/terapia , Enfermedades Musculoesqueléticas/veterinaria , Medicina Regenerativa , Medicina Veterinaria , Animales , Criopreservación , Modelos Animales de Enfermedad
15.
Int J Mol Sci ; 18(10)2017 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-29019941

RESUMEN

Laminitis, a highly debilitating disease of the foot in ungulates, is characterized by pathological changes of the complex lamellar structures that maintain the appendicular skeleton within the hoof. Laminitis is a multifactorial disease that involves perturbation of the vascular, hematological, and inflammatory homeostasis of the foot. Interestingly, the pathogenesis of the disease resembles what is observed in metabolic syndromes and sepsis-induced organ failure in humans and animals. We hypothesized that local administration of mesenchymal stem cells (MSCs) and platelet-rich plasma (PRP) might contribute to establishing an anti-inflammatory and pro-angiogenic environment, and could stimulate the injured tissue in order to restore its functional integrity. According to this assumption, an experimental protocol based on the local intravenous administration of adipose tissue-derived MSCs (aMSCs) in combination with PRP was developed for the treatment of horses affected by chronic laminitis. Nine horses with severely compromised venograms (showing grade III and IV laminitis) that had been unsuccessfully treated with conventional therapies were enrolled. aMSCs and PRP (15 × 106 cells resuspended in 15 mL of PRP) were injected into the lateral or medial digital vein three times, at one-month intervals. The first administration was performed with allogeneic aMSCs, while for the following administrations, autologous aMSCs were used. There was no adverse short-term reaction to the intravenous injection of aMSCs. In the long term, venograms outlined, in all subjects, a progressive amelioration of the vascularization of the foot. An improvement in the structure and function of the hoof was also observed. No adverse events were reported during the follow-up, and the horses returned to a comfortable quality of life. Although the number of animals enrolled in the study is limited, both clinical observations and venography demonstrated an enhancement in the condition of all horses, suggesting that the regenerative therapies in chronic laminitis could be useful, and are worthy of further investigation.


Asunto(s)
Tejido Adiposo/citología , Enfermedades del Pie/veterinaria , Enfermedades de los Caballos/terapia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Plasma Rico en Plaquetas , Administración Intravenosa , Animales , Enfermedad Crónica , Enfermedades del Pie/terapia , Pezuñas y Garras/patología , Caballos , Inflamación/terapia , Inflamación/veterinaria , Calidad de Vida , Medicina Regenerativa
16.
PLoS One ; 12(1): e0169391, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28046048

RESUMEN

The key role of cell cultures in different scientific fields is worldwide recognized, both as in vitro research models alternative to laboratory animals and substrates for biological production. However, many safety concerns rise from the use of animal/human cell lines that may be tumorigenic, leading to potential adverse contaminations in cell-derived biologicals. In order to evaluate the suitability of 13 different cell lines for Poliovirus vaccine production, safety and quality, in vitro/in vivo tumorigenicity and Poliovirus propagation properties were evaluated. Our results revealed that non-human primate cell lines CYNOM-K1, FRhK-4, 4MBr-5 and 4647 are free of tumorigenic features and represent highly susceptible substrates for attenuated Sabin Poliovirus strains. In particular, FRhK-4 and 4647 cell lines are characterized by a higher in vitro replication, resulting indicated for the use in large-scale production field.


Asunto(s)
Carcinogénesis/patología , Transformación Celular Neoplásica/patología , Poliovirus/fisiología , Replicación Viral , Animales , Bioensayo , Línea Celular , Primates
18.
Antiviral Res ; 120: 16-22, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25986248

RESUMEN

Influenza A virus is the principal agent responsible of the respiratory tract's infections in humans. Every year, highly pathogenic and infectious strains with new antigenic assets appear, making ineffective vaccines so far developed. The discovery of RNA interference (RNAi) opened the way to the progress of new promising drugs against Influenza A virus and also to the introduction of disease resistance traits in genetically modified animals. In this paper, we show that Madin-Darby Canine Kidney (MDCK) cell line expressing short hairpin RNAs (shRNAs) cassette, designed on a specific conserved region of the nucleoprotein (NP) viral genome, can strongly inhibit the viral replication of four viral strains sharing the target sequence, reducing the viral mRNA respectively to 2.5×10(-4), 7.5×10(-5), 1.7×10(-3), 1.9×10(-4) compared to the control, as assessed by real-time PCR. Moreover, we demonstrate that during the challenge with a viral strain bearing a single mismatch on the target sequence, although a weaker inhibition is observed, viral mRNA is still lowered down to 1.2×10(-3) folds in the shRNA-expressing clone compared to the control, indicating a broad potential use of this approach. In addition, we developed a highly predictive and fast screening test of siRNA sequences based on dual-luciferase assay, useful for the in vitro prediction of the potential effect of viral inhibition. In conclusion, these findings reveal new siRNA sequences able to inhibit Influenza A virus replication and provide a basis for the development of siRNAs as prophylaxis and therapy for influenza infection both in humans and animals.


Asunto(s)
Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/fisiología , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas del Núcleo Viral/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Animales , Aves , Perros , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Células de Riñón Canino Madin Darby , Proteínas de la Nucleocápside , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , ARN Interferente Pequeño/genética , ARN Viral/análisis , Proteínas de Unión al ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Porcinos , Proteínas del Núcleo Viral/genética
19.
Methods Mol Biol ; 1247: 43-60, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25399087

RESUMEN

Biobanking is an essential tool for ensuring easy availability of high-quality biomaterial collections that combine essential samples and epidemiological, clinical, and research data for the scientific community. Specimen collection is an integral part of clinical research. Indeed, every year throughout the world, millions of biological samples are stored for diagnostics and research, but in many fields the lack of biological material and models is a major hindrance for ongoing research. A biobank facility provides suitable samples for large-scale screening studies and database repositories. Software dedicated to biological banks simplify sample registration and identification, the cataloging of sample properties (type of sample/specimen, associated diseases and/or therapeutic protocols, environmental information, etc.), sample tracking, quality assurance, and specimen availability characterized by well-defined features. Biobank facilities must adopt good laboratory practices (GLPs) and a stringent quality control system and also comply with ethical issues, when required. The creation of a veterinary network can be useful under different aspects: the first one is related to the importance of animal sciences itself to improve research and strategies in the different branches of the veterinary area, and the second aspect is related to the possibility of data management harmonization to improve scientific cooperation.


Asunto(s)
Bancos de Muestras Biológicas , Medicina Veterinaria , Enfermedades de los Animales/diagnóstico , Animales , Bancos de Muestras Biológicas/normas , Preservación Biológica/métodos , Investigación , Manejo de Especímenes/métodos , Manejo de Especímenes/normas , Medicina Veterinaria/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...