Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(31): 21932-21947, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39051942

RESUMEN

The electronic organization of Frustrated Lewis Pairs (FLPs) allows them to activate strong bonds in mechanisms that are usually free of redox events at the Lewis acidic site. The unique 6d/5f manifold of uranium could serve as an interesting FLP acceptor site, but to date FLP-like catalysis with actinide ions is unknown. In this paper, the catalytic, FLP-like hydrogenation reactivity of trivalent uranium complexes is explored in the presence of base-stabilized silylenes. Comparison to isoelectronic, isostructural lanthanide and thorium complexes lends insight into the electronic factors governing dihydrogen activation. Mechanistic studies of the uranium- and lanthanide-catalyzed hydrogenations are presented, including discussion of likely intermediates. Computational modeling of the f-element complexes, combined with experimental comparison to p-block Lewis acids, elucidates the relevance of steric hindrance to productive reactivity with dihydrogen. Consideration of the complete experimental and theoretical evidence provides a clear picture of the electronic and steric factors governing dihydrogen activation by these FLPs.

2.
Inorg Chem ; 62(40): 16343-16353, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37751598

RESUMEN

Ligands that can discriminate between individual rare earth elements are important for production of these critical elements. A set of aryl-vinyl phosphonic acid ligands for extracting rare earth elements were designed and synthesized under the hypothesis that the strength of the rare earth-ligand interactions could be tuned by changing the dipole moment of the ligand. The ligands were synthesized via a two-step reaction procedure using a Heck coupling reaction to functionalize vinyl phosphonic acid, followed by Steglich esterification to obtain high-purity styryl phosphonic acid monoesters with varying dipole moments along the P-C bond. The metal binding strength and composition of the rare earth complexes formed with these styryl phosphonic acid monoesters were experimentally studied by liquid-liquid extraction techniques, while DFT calculations were performed to determine the dipole moments of the free and complexed ligands and the electronic structure of the complexes formed. All three prepared ligands were much stronger extracting agents for europium(III) than the dialkylphosphonic acids usually used for this separation. However, the order of increasing extraction strength was found to match the order of the decreasing calculated dipole moment along the P-C bond of the three styryl-based ligands, rather than correlating with increasing ligand basicity, as reflected by the pKa of the ligands. These findings suggest that this approach can be used to systematically alter the extraction strength of aromatic phosphonic monoesters for rare earth element purification.

3.
J Am Chem Soc ; 145(30): 16374-16382, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37467432

RESUMEN

Manifesting chemical differences in individual rare earth (RE) element complexes is challenging due to the similar sizes of the tripositive cations and the corelike 4f shell. We disclose a new strategy for differentiating between similarly sized Dy3+ and Y3+ ions through a tailored photochemical reaction of their isostructural complexes in which the f-electron states of Dy3+ act as an energy sink. Complexes RE(hfac)3(NMMO)2 (RE = Dy (2-Dy) and Y (2-Y), hfac = hexafluoroacetylacetonate, and NMMO = N-methylmorpholine-N-oxide) showed variable rates of oxygen atom transfer (OAT) to triphenylphosphine under ultraviolet (UV) irradiation, as monitored by 1H and 19F NMR spectroscopies. Ultrafast transient absorption spectroscopy (TAS) identified the excited state(s) responsible for the photochemical OAT reaction or lack thereof. Competing sensitization pathways leading to excited-state deactivation in 2-Dy through energy transfer to the 4f electron manifold ultimately slows the OAT reaction at this metal cation. The measured rate differences between the open-shell Dy3+ and closed-shell Y3+ complexes demonstrate that using established principles of 4f ion sensitization may deliver new, selective modalities for differentiating the RE elements that do not depend on cation size.

4.
Dalton Trans ; 52(25): 8620-8630, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37284797

RESUMEN

A series of new Me2Si-bridged cyclopentadiene/indene proligands {Me2Si(R2',5'2-R3',4'2-Cp)(R2,R4,R5,R6-Ind)H2} (1a-j) with various substitutions both on the indene and cyclopentadiene moieties was prepared. The corresponding C1-symmetric group 4 ansa-metallocene complexes (M = Zr, Hf), namely, {Me2Si(Me4Cp)(Ind)}ZrCl2 (2a-Zr), {Me2Si(Me4Cp)(2-Me,4-Ph-Ind)}MCl2 (2b-M), {Me2Si(Me4Cp)(2-Me,4-Ph,6-tBu-Ind)}ZrCl2 (2c-Zr), {Me2Si(Me4Cp)(2-Me,4-Ph,5-OMe,6-tBu-Ind)}MCl2 (2d-M), {Me2Si(Me4Cp)(2-R',4-(3',5'-tBu2,4'-OMe-C6H2),5-OMe,6-tBu-Ind)}ZrCl2, R' = Me (2e-Zr), R' = Et (2f-Zr), {Me2Si(2,5-Ph2-3,4-Me2-Cp)(2-Me,4-(3',5'-tBu2,4'-OMe-C6H2),5-OMe,6-tBu-Ind)}ZrCl2 (2g-Zr), {Me2Si(Me4Cp)(2-Me,4-(3',6'-tBu2-carbazol-4'-yl)-Ind)}ZrCl2 (2h-Zr), {Me2Si(2,5-Me2,3,4-iPr2-Cp)(2-Me,4-Ph-Ind)}ZrCl2 (2i-Zr), {Me2Si(2,5-Me2,3,4-iPr2-Cp)(2-Me,4-Ph,6-tBu-Ind)}ZrCl2 (2j-Zr) and {Me2Si(Me4Cp)(2-Me-4,5-[a]anthracene-Ind)}MCl2 (2k-Zr) were synthesized and characterized by NMR spectroscopy and mass spectrometry. The solid-state molecular structures of 2b-Zr, 2d-Zr, 2e-Zr, 2f-Zr, 2j-Zr and 2k-Zr were determined by X-ray crystallography. The zirconocene complexes, once activated with MAO in toluene solution, exhibited propylene polymerization activities at 60 °C up to 161 000 kg(PP) mol(Zr)-1 h-1, affording highly isotactic polypropylenes (iPP) with [m]4 up to 96.5% and Tm up to 157 °C. Also, metallocene complexes 2b-e-Zr were supported on SiO2-MAO and evaluated in slurry bulk propylene polymerization at 70 °C, producing iPPs with [m]4 = 91.7-96.6 mol% and low regiodefects (0.2-0.3 mol%) content, with productivities up to 636 000 kg(PP) mol(Zr)-1 h-1. DFT calculations allowed rationalizing a polymerization reaction mechanism occurring through "chain-stationary" enchainment with preference for 1,2-insertions.

5.
Chem Sci ; 14(19): 5188-5195, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37206401

RESUMEN

Reactions of a dimagnesium(i) compound, [{(DipNacnac)Mg}2] (DipNacnac = [HC(MeCNDip)2]-, Dip = 2,6-diisopropylphenyl), pre-activated by coordination with simple Lewis bases (4-dimethylaminopyridine, DMAP; or TMC, :C(MeNCMe)2), with 1 atmosphere of CO in the presence of one equivalent of Mo(CO)6 at room temperature, led to the reductive tetramerisation of the diatomic molecule. When the reactions were carried out at room temperature, there is an apparent competition between the formation of magnesium squarate, [{(DipNacnac)Mg}{cyclo-(κ4-C4O4)}{µ-Mg(DipNacnac)}]2, and magnesium metallo-ketene products, [{(DipNacnac)Mg}[µ-O[double bond, length as m-dash]CC{Mo(CO)5}C(O)CO2]{Mg(D)(DipNacnac)}], which are not inter-convertible. Repeating the reactions at 80 °C led to the selective formation of the magnesium squarate, implying that this is the thermodynamic product. In an analogous reaction, in which THF is the Lewis base, only the metallo-ketene complex, [{(DipNacnac)Mg}[µ-O[double bond, length as m-dash]CC{Mo(CO)5}C(O)CO2]{Mg(THF)(DipNacnac)}] is formed at room temperature, while a complex product mixture is obtained at elevated temperature. In contrast, treatment of a 1 : 1 mixture of the guanidinato magnesium(i) complex, [(Priso)Mg-Mg(Priso)] (Priso = [Pri2NC(NDip)2]-), and Mo(CO)6, with CO gas in a benzene/THF solution, gave a low yield of the squarate complex, [{(Priso)(THF)Mg}{cyclo-(κ4-C4O4)}{µ-Mg(THF)(Priso)}]2, at 80 °C. Computational analyses of the electronic structure of squarate and metallo-ketene product types corroborate the bonding proposed from experimental data, for the C4O4 fragments of these systems.

6.
Natl Sci Rev ; 10(2): nwac144, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36950222

RESUMEN

The Haber-Bosch process produces ammonia (NH3) from dinitrogen (N2) and dihydrogen (H2), but requires high temperature and pressure. Before iron-based catalysts were exploited in the current industrial Haber-Bosch process, uranium-based materials served as effective catalysts for production of NH3 from N2. Although some molecular uranium complexes are known to be capable of combining with N2, further hydrogenation with H2 forming NH3 has not been reported to date. Here, we describe the first example of N2 cleavage and hydrogenation with H2 to NH3 with a molecular uranium complex. The N2 cleavage product contains three uranium centers that are bridged by three imido µ 2-NH ligands and one nitrido µ 3-N ligand. Labeling experiments with 15N demonstrate that the nitrido ligand in the product originates from N2. Reaction of the N2-cleaved complex with H2 or H+ forms NH3 under mild conditions. A synthetic cycle has been established by the reaction of the N2-cleaved complex with trimethylsilyl chloride. The isolation of this trinuclear imido-nitrido product implies that a multi-metallic uranium assembly plays an important role in the activation of N2.

7.
Nat Commun ; 13(1): 3809, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35778419

RESUMEN

Uranium nitrides play important roles in dinitrogen activation and functionalization and in chemistry for nuclear fuels, but the synthesis and isolation of the highly reactive uranium(VI) nitrides remains challenging. Here, we report an example of transition metal (TM) stabilized U(VI) nitride complexes, which are generated by the photolysis of azide-bridged U(IV)-TM (TM = Rh, Ir) precursors. The U(V) nitride intermediates with bridged azide ligands are isolated successfully by careful control of the irradiation time, suggesting that the photolysis of azide-bridged U(IV)-TM precursors is a stepwise process. The presence of two U(VI) nitrides stabilized by three TMs is clearly demonstrated by an X-ray crystallographic study. These TM stabilized U(V) nitride intermediates and U(VI) nitride products exhibit excellent stability both in the solid-state and in THF solution under ambient light. Density functional theory calculations show that the photolysis necessary to break the N-N bond of the azide ligands implies excitation from uranium f-orbital to the lowest unoccupied molecular orbital (LUMO), as suggested by the strong antibonding N-(N2) character present in the latter.

8.
Angew Chem Int Ed Engl ; 61(20): e202201705, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35238149

RESUMEN

Reaction of the 1,2-disilylene, [{ArC(NDip)2 }Si]2 1 (Dip=2,6-diisopropylphenyl, Ar=4-C6 H4 But ), with CO proceeds via insertion of CO into one Si-N bond, and Si-Si bond cleavage, to cleanly give the bis(silylene), {ArC(NDip)2 }Si(:)O C S i ( : ) ( N D i p )​ 2 C ‾ Ar 2, under ambient conditions. The reaction can be partially reversed when solutions of 2 are subjected to UV irradiation. The five-membered heterocyclic fragment of 2 represents the first silicon analogue of an "abnormal" N-heterocyclic carbene (aNHC), a view which is substantiated by a computational analysis of the compound. Reaction of 2 with [Mo(CO)6 ] under UV light affords the chelate complex, [Mo(CO)4 (κ2 -Si,Si-2)] 3, while reaction with [Fe(CO)5 ] gives the unusual silyleneyl bridged complex, [{Fe2 (CO)6 }{µ-Si[(NDip)2 CAr]}2 ] 4. The same coordination complexes can be accessed by reaction of 1 with [Mo(CO)6 ] or [Fe(CO)5 ] under UV light. As is the case for aNHCs, d-block metal complexes of bis(silylene) 2 could prove useful as bespoke catalysts for organic transformations.

9.
Chem Sci ; 13(3): 681-691, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35173932

RESUMEN

Among the 14 lanthanide elements (Ce-Lu), until recently, the tetravalent oxidation state was readily accessible in solution only for cerium while Pr(iv), Nd(iv), Dy(iv) and Tb(iv) had only been detected in the solid state. The triphenylsiloxide ligand recently allowed the isolation of molecular complexes of Tb(iv) and Pr(iv) providing an unique opportunity of investigating the luminescent properties of Ln(iv) ions. Here we have expanded the coordination studies of the triphenylsiloxide ligand with Ln(iii) and Ln(iv) ions and we report the first observed luminescence emission spectra of Pr(iv) complexes which are assigned to a ligand-based emission on the basis of the measured lifetime and computational studies. Binding of the ligand to the Pr(iv) ion leads to an unprecedented large shift of the ligand triplet state which is relevant for future applications in materials science.

10.
J Am Chem Soc ; 143(47): 19748-19760, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34787416

RESUMEN

Two-electron reduction of the amidate-supported U(III) mono(arene) complex U(TDA)3 (2) with KC8 yields the anionic bis(arene) complex [K[2.2.2]cryptand][U(TDA)2] (3) (TDA = N-(2,6-di-isopropylphenyl)pivalamido). EPR spectroscopy, magnetic susceptibility measurements, and calculations using DFT as well as multireference CASSCF methods all provide strong evidence that the electronic structure of 3 is best represented as a 5f4 U(II) metal center bound to a monoreduced arene ligand. Reactivity studies show 3 reacts as a U(I) synthon by behaving as a two-electron reductant toward I2 to form the dinuclear U(III)-U(III) triiodide species [K[2.2.2]cryptand][(UI(TDA)2)2(µ-I)] (6) and as a three-electron reductant toward cycloheptatriene (CHT) to form the U(IV) complex [K[2.2.2]cryptand][U(η7-C7H7)(TDA)2(THF)] (7). The reaction of 3 with cyclooctatetraene (COT) generates a mixture of the U(III) anion [K[2.2.2]cryptand][U(TDA)4] (1-crypt) and U(COT)2, while the addition of COT to complex 2 instead yields the dinuclear U(IV)-U(IV) inverse sandwich complex [U(TDA)3]2(µ-η8:η3-C8H8) (8). Two-electron reduction of the homoleptic Th(IV) amidate complex Th(TDA)4 (4) with KC8 gives the mono(arene) complex [K[2.2.2]cryptand][Th(TDA)3(THF)] (5). The C-C bond lengths and torsion angles in the bound arene of 5 suggest a direduced arene bound to a Th(IV) metal center; this conclusion is supported by DFT calculations.


Asunto(s)
Complejos de Coordinación/química , Uranio/química , Complejos de Coordinación/síntesis química , Teoría Funcional de la Densidad , Ligandos , Modelos Químicos , Oxidación-Reducción , Torio/química
11.
Nat Commun ; 12(1): 4832, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376682

RESUMEN

Disproportionation, where a chemical element converts its oxidation state to two different ones, one higher and one lower, underpins the fundamental chemistry of metal ions. The overwhelming majority of uranium disproportionations involve uranium(III) and (V), with a singular example of uranium(IV) to uranium(V/III) disproportionation known, involving a nitride to imido/triflate transformation. Here, we report a conceptually opposite disproportionation of uranium(IV)-imido complexes to uranium(V)-nitride/uranium(III)-amide mixtures. This is facilitated by benzene, but not toluene, since benzene engages in a redox reaction with the uranium(III)-amide product to give uranium(IV)-amide and reduced arene. These disproportionations occur with potassium, rubidium, and cesium counter cations, but not lithium or sodium, reflecting the stability of the corresponding alkali metal-arene by-products. This reveals an exceptional level of ligand- and solvent-control over a key thermodynamic property of uranium, and is complementary to isolobal uranium(V)-oxo disproportionations, suggesting a potentially wider prevalence possibly with broad implications for the chemistry of uranium.

12.
Chemistry ; 27(52): 13144-13148, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34258796

RESUMEN

A dimeric ß-diketiminato ytterbium(II) hydride affects both the two-electron aromatization of 1,3,5,7-cyclooctatetraene (COT) and the more challenging two-electron reduction of polyaromatic hydrocarbons, including naphthalene (E0 =-2.60 V). Confirmed by Density Functional Theory calculations, these reactions proceed via consecutive polarized Yb-H/C=C insertion and deprotonation steps to provide the respective ytterbium (II) inverse sandwich complexes and hydrogen gas. These observations highlight the ability of a simple ytterbium(II) hydride to act as a powerful two-electron reductant at room temperature without the necessity of an external electron to initiate the reaction and avoiding radicaloid intermediates.

13.
J Am Chem Soc ; 143(29): 11225-11234, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34269064

RESUMEN

Multimetallic cooperativity is believed to play a key role in the cleavage of dinitrogen to nitrides (N3-), but the mechanism remains ambiguous due to the lack of isolated intermediates. Herein, we report the reduction of the complex [K2{[UV(OSi(OtBu)3)3]2(µ-O)(µ-η2:η2-N2)}], B, with KC8, yielding the tetranuclear tetranitride cluster [K6{(OSi(OtBu)3)2UIV}3{(OSi(OtBu)3)2UVI}(µ4-N)3(µ3-N)(µ3-O)2], 1, a novel example of N2 cleavage to nitride by a diuranium complex. The structure of complex 1 is remarkable, as it contains a unique uranium center bound by four nitrides and provides the second example of a trans-N═UVI═N core analogue of UO22+. Experimental and computational studies indicate that the formation of the U(IV)/U(VI) tetrauranium cluster occurs via successive one-electron transfers from potassium to the bound N24- ligand in complex B, resulting in N2 cleavage and the formation of the putative diuranium(V) bis-nitride [K4{[UV(OSi(OtBu)3)3]2(µ-O)(µ-N)2}], X. Additionally, cooperative potassium binding to the U-bound N24- ligand facilitates dinitrogen cleavage during electron transfer. The nucleophilic nitrides in both complexes are easily functionalized by protons to yield ammonia in 93-97% yield and with excess 13CO to yield K13CN and KN13CO. The structures of two tetranuclear U(IV)/U(V) bis- and mononitride clusters isolated from the reaction with CO demonstrate that the nitride moieties are replaced by oxides without disrupting the tetranuclear structure, but ultimately leading to valence redistribution.

14.
Chem Sci ; 12(17): 6153-6158, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33996013

RESUMEN

The redox chemistry of uranium is dominated by single electron transfer reactions while single metal four-electron transfers remain unknown in f-element chemistry. Here we show that the oxo bridged diuranium(iii) complex [K(2.2.2-cryptand)]2[{((Me3Si)2N)3U}2(µ-O)], 1, effects the two-electron reduction of diphenylacetylene and the four-electron reduction of azobenzene through a masked U(ii) intermediate affording a stable metallacyclopropene complex of uranium(iv), [K(2.2.2-cryptand)][U(η 2-C2Ph2){N(SiMe3)2}3], 3, and a bis(imido)uranium(vi) complex [K(2.2.2-cryptand)][U(NPh)2{N(SiMe3)2}3], 4, respectively. The same reactivity is observed for the previously reported U(ii) complex [K(2.2.2-cryptand)][U{N(SiMe3)2}3], 2. Computational studies indicate that the four-electron reduction of azobenzene occurs at a single U(ii) centre via two consecutive two-electron transfers and involves the formation of a U(iv) hydrazide intermediate. The isolation of the cis-hydrazide intermediate [K(2.2.2-cryptand)][U(N2Ph2){N(SiMe3)2}3], 5, corroborated the mechanism proposed for the formation of the U(vi) bis(imido) complex. The reduction of azobenzene by U(ii) provided the first example of a "clear-cut" single metal four-electron transfer in f-element chemistry.

15.
Nat Commun ; 12(1): 3147, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-34035284

RESUMEN

Although the nucleophilic alkylation of aromatics has recently been achieved with a variety of potent main group reagents, all of this reactivity is limited to a stoichiometric regime. We now report that the ytterbium(II) hydride, [BDIDippYbH]2 (BDIDipp = CH[C(CH3)NDipp]2, Dipp = 2,6-diisopropylphenyl), reacts with ethene and propene to provide the ytterbium(II) n-alkyls, [BDIDippYbR]2 (R = Et or Pr), both of which alkylate benzene at room temperature. Density functional theory (DFT) calculations indicate that this latter process operates through the nucleophilic (SN2) displacement of hydride, while the resultant regeneration of [BDIDippYbH]2 facilitates further reaction with ethene or propene and enables the direct catalytic (anti-Markovnikov) hydroarylation of both alkenes with a benzene C-H bond.

16.
J Am Chem Soc ; 143(15): 5998-6005, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33825481

RESUMEN

Although a series of complexes with rare earth (RE) metal-metal bonds have been reported, complexes which have multiple RE-Rh bonds are unknown. Here we present the identification of the first example of a molecule containing multiple RE-Rh bonds. The complex with multiple Ce-Rh bonds was synthesized by the reduction of a d-f heterometallic molecular cluster Ce{N[(CH2CH2NPiPr2)RhCl(COD)]3} with excess potassium-graphite. The oxidation state of Ce in 3a appears to be a mixture of Ce(III) and Ce(IV), which was confirmed by X-ray photoelectron spectroscopy, magnetism, and theoretical investigations (DFT and CASSCF). For comparison, the analogous species with multiple La(III)-Rh and Nd(III)-Rh bonds were also constructed. This study provides a possible route for the construction of complexes with multiple RE metal-metal bonds and an investigation of their potential properties and applications.

17.
Angew Chem Int Ed Engl ; 60(13): 7087-7092, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33474826

RESUMEN

The photochemical activation of dimagnesium(I) compounds, and subsequent high yielding, regioselective reactions with inert arenes are reported. Irradiating benzene solutions of [{(Ar Nacnac)Mg}2 ] (Ar Nacnac=[HC(MeCNAr)2 ]- ; Ar=2,6-diisopropylphenyl (Dip) or 2,4,6-tricyclohexylphenyl (TCHP)) with blue or UV light, leads to double reduction of benzene and formation of the "Birch-like" cyclohexadienediyl bridged compounds, [{(Ar Nacnac)Mg}2 (µ-C6 H6 )]. Irradiation of [{(Dip Nacnac)Mg}2 ] in toluene, and each of the three isomers of xylene, promoted completely regio- and chemo-selective C-H bond activations, and formation of [(Dip Nacnac)Mg(Ar')] (Ar'=meta-tolyl; 2,3-, 3,5- or 2,5-dimethylphenyl), and [{(Dip Nacnac)Mg(µ-H)}2 ]. Fluorobenzene was cleanly defluorinated by photoactivated [{(Dip Nacnac)Mg}2 ], leading to biphenyl and [{(Dip Nacnac)Mg(µ-F)}2 ]. Computational studies suggest all reactions proceed via photochemically generated magnesium(I) radicals, which reduce the arene substrate, before C-H or C-F bond activation processes occur.

18.
Dalton Trans ; 50(6): 2083-2092, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33481968

RESUMEN

Salt metathesis reactions between a low-valent rhenium(i) complex, Na[Re(η5-Cp)(BDI)] (BDI = N,N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-ß-diketiminate), and a series of amidinate-supported tetrylenes of the form ECl[PhC(NtBu)2] (E = Si, Ge, Sn) led to rhenium metallotetrylenes Re(E[PhC(NtBu)2])(η5-Cp)(BDI) (E = Si (1a), Ge (2), Sn (4)) with varying extents of Re-E multiple bonding. Whereas the rhenium-stannylene 4 adopts a σ-metallotetrylene arrangement featuring a Re-E single bond, the rhenium-silylene (1a) and -germylene (2) both engage in π-interactions to form short Re-E multiple bonds. Temperature was found to play a crucial role in reactions between Na[Re(η5-Cp)(BDI)] and SiCl[PhC(NtBu)2], as manipulation of reaction conditions led to isolation of an unusual rhenium-silane, (BDI)Re(µ-η5:η1-C5H4)(SiH[PhC(NtBu)2]) (1b) and a dinitrogen bridged rhenium-silylene, (η5-Cp)(BDI)Re(µ-N2)Si[PhC(NtBu)2] (1c), in addition to 1a. Finally, the reaction of Na[Re(η5-Cp)(BDI)] with GeCl2·dioxane led to a rare µ2-tetrelido complex, µ2-Ge[Re(η5-Cp)(BDI)]2 (3). Bonding interactions within these complexes are discussed through the lens of various spectroscopic, structural, and computational investigations.

19.
Chemistry ; 27(19): 5999-6006, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33443293

RESUMEN

The [2+1] cycloaddition reaction of a metal carbene with an alkene can produce important cyclopropane products for synthetic intermediates, materials, and pharmaceutical applications. However, this reaction is often accompanied by side reactions, such as coupling and self-coupling, so that the yield of the cyclopropanation product of non-silver transition-metal carbenes and hindered alkenes is generally lower than 50 %. To solve this problem, the addition of a low concentration of diazo compound (decomposition of sulfonyl hydrazones) to alkenes catalyzed by either CuOAc or PdCl2 was studied, but side reactions could still not be avoided. Interestingly, however, the yield of cyclopropanation products for such hindered alkenes were as high as 99 % with AgOTf as a catalyst. To explain this unexpected phenomenon, reaction pathways have been computed for four different catalysts by using DFT. By combining the results of these calculations with those obtained experimentally, it can be concluded that the efficiency of the silver catalyst is due to the barrierless concerted cycloaddition step and the kinetic inhibition of side reactions by a high concentration of alkene.

20.
Angew Chem Int Ed Engl ; 60(7): 3737-3744, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33085160

RESUMEN

Oxide is an attractive linker for building polymetallic complexes that provide molecular models for metal oxide activity, but studies of these systems are limited to metals in high oxidation states. Herein, we synthesized and characterized the molecular and electronic structure of diuranium bridged UIII /UIV and UIII /UIII complexes. Reactivity studies of these complexes revealed that the U-O bond is easily broken upon addition of N-heterocycles resulting in the delivery of a formal equivalent of UIII and UII , respectively, along with the uranium(IV) terminal-oxo coproduct. In particular, the UIII /UIII oxide complex effects the reductive coupling of pyridine and two-electron reduction of 4,4'-bipyridine affording unique examples of diuranium(III) complexes bridged by N-heterocyclic redox-active ligands. These results provide insight into the chemistry of low oxidation state metal oxides and demonstrate the use of oxo-bridged UIII /UIII complexes as a strategy to explore UII reactivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA