Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Pharmacol ; 127: 34-45, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28017778

RESUMEN

Disruption of the endothelial barrier in response to Gram positive (G+) bacterial toxins is a major complication of acute lung injury (ALI) and can be further aggravated by antibiotics which stimulate toxin release. The integrity of the pulmonary endothelial barrier is mediated by the balance of disruptive forces such as the small GTPase RhoA, and protective forces including endothelium-derived nitric oxide (NO). How NO protects against the barrier dysfunction is incompletely understood and our goal was to determine whether NO and S-nitrosylation can modulate RhoA activity and whether this mechanism is important for G+ toxin-induced microvascular permeability. We found that the G+ toxin listeriolysin-O (LLO) increased RhoA activity and that NO and S-NO donors inhibit RhoA activity. RhoA was robustly S-nitrosylated as determined by biotin-switch and mercury column analysis. MS revealed that three primary cysteine residues are S-nitrosylated including cys16, cys20 and cys159. Mutation of these residues to serine diminished S-nitrosylation to endogenous NO and mutant RhoA was less sensitive to inhibition by S-NO. G+-toxins stimulated the denitrosylation of RhoA which was not mediated by S-nitrosoglutathione reductase (GSNOR), thioredoxin (TRX) or thiol-dependent enzyme activity but was instead stimulated directly by elevated calcium levels. Calcium-promoted the direct denitrosylation of WT but not mutant RhoA and mutant RhoA adenovirus was more effective than WT in disrupting the barrier integrity of human lung microvascular endothelial cells. In conclusion, we reveal a novel mechanism by which NO and S-nitrosylation reduces RhoA activity which may be of significance in the management of pulmonary endothelial permeability induced by G+-toxins.


Asunto(s)
Toxinas Bacterianas/farmacología , Endotelio Vascular/metabolismo , Proteínas de Choque Térmico/farmacología , Proteínas Hemolisinas/farmacología , Compuestos Nitrosos/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Células COS , Calcio/metabolismo , Chlorocebus aethiops , Células Endoteliales/metabolismo , Células HEK293 , Humanos , Pulmón/irrigación sanguínea , Microvasos/metabolismo , Mutación , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Permeabilidad , Proteína de Unión al GTP rhoA/genética
2.
Free Radic Biol Med ; 31(4): 490-8, 2001 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-11498282

RESUMEN

The role of intracellular iron, copper, and calcium in hydrogen peroxide-induced DNA damage was investigated using cultured Jurkat cells. The cells were exposed to low rates of continuously generated hydrogen peroxide by the glucose/glucose oxidase system, and the formation of single strand breaks in cellular DNA was evaluated by the sensitive method, single cell gel electrophoresis or "comet" assay. Pre-incubation with the specific ferric ion chelator desferrioxamine (0.1-5.0 mM) inhibited DNA damage in a time- and dose-dependent manner. On the other hand, diethylenetriaminepentaacetic acid (DTPA), a membrane impermeable iron chelator, was ineffective. The lipophilic ferrous ion chelator 1,10-phenanthroline also protected against DNA damage, while its nonchelating isomer 1,7-phenanthroline provided no protection. None of the above iron chelators produced DNA damage by themselves. In contrast, the specific cuprous ion chelator neocuproine (2,9-dimethyl-1,10-phenanthroline), as well as other copper-chelating agents, did not protect against H(2)O(2)-induced cellular DNA damage. In fact, membrane permeable copper-chelating agents induced DNA damage in the absence of H(2)O(2). These results indicate that, under normal conditions, intracellular redox-active iron, but not copper, participates in H(2)O(2)-induced single strand break formation in cellular DNA. Since BAPTA/AM (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester), an intracellular Ca(2+)-chelator, also protected against H(2)O(2)-induced DNA damage, it is likely that intracellular Ca(2+) changes are involved in this process as well. The exact role of Ca(2+) and its relation to intracellular transition metal ions, in particular iron, needs to be further investigated.


Asunto(s)
Cobre/metabolismo , Daño del ADN/efectos de los fármacos , Ácido Egtácico/análogos & derivados , Peróxido de Hidrógeno/toxicidad , Hierro/metabolismo , Calcio/metabolismo , Quelantes/farmacología , Citosol/efectos de los fármacos , ADN de Cadena Simple/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ácido Egtácico/farmacología , Etilenodiaminas/farmacología , Glucosa Oxidasa/farmacología , Humanos , Quelantes del Hierro/farmacología , Células Jurkat/efectos de los fármacos , Células Jurkat/metabolismo , Oxidación-Reducción , Ácido Pentético/farmacología , Fenantrolinas/farmacología , Factores de Tiempo
3.
Free Radic Biol Med ; 30(6): 679-85, 2001 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11295366

RESUMEN

Human lymphocytes were exposed to increasing concentrations of SIN-1, which generates superoxide and nitric oxide, and the formation of single-strand breaks (SSB) in individual cells was determined by the single-cell gel electrophoresis assay (comet assay). A dose- and time-dependent increase in SSB formation was observed rapidly after the addition of SIN-1 (0.1-15 mM). Exposure of the cells to SIN-1 (5 mM) in the presence of excess of superoxide dismutase (0.375 mM) increased the formation of SSB significantly, whereas 1000 U/ml catalase significantly decreased the quantity of SSB. The simultaneous presence of both superoxide dismutase and catalase before the addition of SIN-1 brought the level of SSB to that of the untreated cells. Moreover, pretreatment of the cells with the intracellular Ca(2+)-chelator BAPTA/AM inhibited SIN-1-induced DNA damage, indicating the involvement of intracellular Ca(2+) changes in this process. On the other hand, pretreatment of the same cells with ascorbate or dehydroascorbate did not offer any significant protection in this system. The data suggest that H2O2-induced changes in Ca(2+) homeostasis are the predominant pathway for the induction of SSB in human lymphocytes exposed to oxidants.


Asunto(s)
Ensayo Cometa , Daño del ADN/efectos de los fármacos , Linfocitos/efectos de los fármacos , Molsidomina/farmacología , Donantes de Óxido Nítrico/farmacología , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/farmacología , Calcio/metabolismo , Catalasa/metabolismo , Quelantes/farmacología , ADN de Cadena Simple/efectos de los fármacos , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Interpretación Estadística de Datos , Relación Dosis-Respuesta a Droga , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Citometría de Flujo , Humanos , Cinética , Linfocitos/metabolismo , Microscopía Ultravioleta , Molsidomina/análogos & derivados , Molsidomina/antagonistas & inhibidores , Nitratos/metabolismo , Donantes de Óxido Nítrico/antagonistas & inhibidores , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...