Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
APL Bioeng ; 7(4): 046104, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37868708

RESUMEN

Vascular dysfunction is a common cause of cardiovascular diseases characterized by the narrowing and stiffening of arteries, such as atherosclerosis, restenosis, and hypertension. Arterial narrowing results from the aberrant proliferation of vascular smooth muscle cells (VSMCs) and their increased synthesis and deposition of extracellular matrix (ECM) proteins. These, in turn, are modulated by arterial stiffness, but the mechanism for this is not fully understood. We found that survivin is an important regulator of stiffness-mediated ECM synthesis and intracellular stiffness in VSMCs. Whole-transcriptome analysis and cell culture experiments showed that survivin expression is upregulated in injured femoral arteries in mice and in human VSMCs cultured on stiff fibronectin-coated hydrogels. Suppressed expression of survivin in human VSMCs significantly decreased the stiffness-mediated expression of ECM components related to arterial stiffening, such as collagen-I, fibronectin, and lysyl oxidase. By contrast, expression of these ECM proteins was rescued by ectopic expression of survivin in human VSMCs cultured on soft hydrogels. Interestingly, atomic force microscopy analysis showed that suppressed or ectopic expression of survivin decreases or increases intracellular stiffness, respectively. Furthermore, we observed that inhibiting Rac and Rho reduces survivin expression, elucidating a mechanical pathway connecting intracellular tension, mediated by Rac and Rho, to survivin induction. Finally, we found that survivin inhibition decreases FAK phosphorylation, indicating that survivin-dependent intracellular tension feeds back to maintain signaling through FAK. These findings suggest a novel mechanism by which survivin potentially modulates arterial stiffness.

2.
bioRxiv ; 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37333143

RESUMEN

Brain research is an area of research characterized by its cutting-edge nature, with brain mapping constituting a crucial aspect of this field. As sequencing tools have played a crucial role in gene sequencing, brain mapping largely depends on automated, high-throughput and high-resolution imaging techniques. Over the years, the demand for high-throughput imaging has scaled exponentially with the rapid development of microscopic brain mapping. In this paper, we introduce the novel concept of confocal Airy beam into oblique light-sheet tomography named CAB-OLST. We demonstrate that this technique enables the high throughput of brain-wide imaging of long-distance axon projection for the entire mouse brain at a resolution of 0.26 µm × 0.26 µm × 1.06 µm in 58 hours. This technique represents an innovative contribution to the field of brain research by setting a new standard for high-throughput imaging techniques.

3.
Nat Neurosci ; 26(3): 495-505, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36690900

RESUMEN

Understanding how cortical circuits generate complex behavior requires investigating the cell types that comprise them. Functional differences across pyramidal neuron (PyN) types have been observed within cortical areas, but it is not known whether these local differences extend throughout the cortex, nor whether additional differences emerge when larger-scale dynamics are considered. We used genetic and retrograde labeling to target pyramidal tract, intratelencephalic and corticostriatal projection neurons and measured their cortex-wide activity. Each PyN type drove unique neural dynamics, both at the local and cortex-wide scales. Cortical activity and optogenetic inactivation during an auditory decision task revealed distinct functional roles. All PyNs in parietal cortex were recruited during perception of the auditory stimulus, but, surprisingly, pyramidal tract neurons had the largest causal role. In frontal cortex, all PyNs were required for accurate choices but showed distinct choice tuning. Our results reveal that rich, cell-type-specific cortical dynamics shape perceptual decisions.


Asunto(s)
Neuronas , Células Piramidales , Lóbulo Frontal , Interneuronas , Optogenética
4.
Nature ; 598(7879): 159-166, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616071

RESUMEN

An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture.


Asunto(s)
Corteza Motora/anatomía & histología , Corteza Motora/citología , Neuronas/clasificación , Animales , Atlas como Asunto , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Glutamatos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroimagen , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Análisis de Secuencia de ARN , Análisis de la Célula Individual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA