Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 7(6): 2044-51, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16768432

RESUMEN

Novel "green" composites were successfully fabricated from recycled cellulose fibers (RCF) and a bacterial polyester, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) by melt mixing technique. Various weight contents (15%, 30%, and 40%) of the fibers were incorporated in the PHBV matrix. The effect of the fiber weight contents on the thermal, mechanical, and dynamic-mechanical thermal properties of PHBV was investigated and a comparative property analysis was performed with RCF-reinforced polypropylene (PP) composites. The tensile and storage moduli of the PHBV-based composites were improved by 220% and 190%, respectively, by reinforcement with 40 wt % RCF. Halpin-Tsai and Tsai-Pagano's equations were applied for the theoretical modeling of the tensile modulus of PHBV-based composites. The heat deflection temperature (HDT) of the PHBV-based composites was increased from 105 to 131 degrees C, while the coefficient of linear thermal expansion (CLTE) value was reduced by 70% upon reinforcement with 40 wt % RCF. The PHBV-based composites had also shown better tensile and storage moduli and lower CLTE values than PP-based composites. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to study the melting behavior, thermal stability, and morphology of the composite systems, respectively.


Asunto(s)
Biopolímeros/química , Celulosa/química , Poliésteres/química , Rastreo Diferencial de Calorimetría/métodos , Ensayo de Materiales , Microscopía Electrónica de Rastreo/métodos , Estructura Molecular , Peso Molecular , Tamaño de la Partícula , Polipropilenos/química , Sensibilidad y Especificidad , Temperatura , Resistencia a la Tracción , Termogravimetría/métodos
2.
Microsc Res Tech ; 38(5): 529-43, 1997 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-9376658

RESUMEN

Asphalt cements are often regarded as a colloidal system containing several hydrocarbon constituents: asphaltenes, resins, and oils. The high molecular weight asphaltene particles are considered to be covered in a sheath of resins and dispersed in the lower molecular weight oily medium [Whiteoak (1990) The Shell Bitumen Handbook (Shell Bitumen UK, Riversdell House, Surrey, UK)]. However, the exact arrangement of the asphaltene particles within the oily phase will vary depending on the relative amounts of resin, asphaltene, and oils. It is this arrangement and the degree of association between asphaltene particles that govern the rheological properties of the cement [Simpson et al. (1961) J. Chem. Eng. Data 6:426-429; Whiteoak (1990)]. Here we report for the first time the observation of a three-dimensional network of asphaltene strands within straight, polymer-modified, and aged asphalt cements. While the existence of a asphaltene/resin micelle network has been proposed in previous studies [Whiteoak (1990)], direct observation has not been reported. The network is expected to greatly influence the rheological properties of the asphalt binder and ultimately the properties of asphalt concretes. In situ fracture studies of asphalt cement/aggregate composites indicate a possible correlation between the network structure and adhesion between the cement binder and aggregate.


Asunto(s)
Hidrocarburos/análisis , Hidrocarburos/química , Microscopía Electrónica de Rastreo , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...