Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1313536, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38187400

RESUMEN

Introduction: Bone metastasis (BoM) occurs when cancer cells spread from their primary sites to a bone. Currently, the mechanism underlying this metastasis process remains unclear. Methods: In this project, through an integrated analysis of bulk-sequencing and single-cell RNA transcriptomic data, we explored the BoM-related features in tumor microenvironments of different tumors. Results: We first identified 34 up-regulated genes during the BoM process in breast cancer, and further explored their expression status among different components in the tumor microenvironment (TME) of BoM samples. Enriched EMP1+ fibroblasts were found in BoM samples, and a COL3A1-ADGRG1 communication between these fibroblasts and cancer cells was identified which might facilitate the BoM process. Moreover, a significant correlation between EMP1 and COL3A1 was identified in these fibroblasts, confirming the potential connection of these genes during the BoM process. Furthermore, the existence of these EMP1+/COL3A1+ fibroblasts was also verified in prostate cancer and renal cancer BoM samples, suggesting the importance of these fibroblasts from a pan-cancer perspective. Discussion: This study is the first attempt to investigate the relationship between fibroblasts and BoM process across multi-tumor TMEs. Our findings contribute another perspective in the exploration of BoM mechanism while providing some potential targets for future treatments of tumor metastasis.


Asunto(s)
Neoplasias Óseas , Carcinoma de Células Renales , Neoplasias Renales , Melanoma , Neoplasias Primarias Secundarias , Neoplasias Cutáneas , Masculino , Humanos , Próstata , Neoplasias Renales/genética , Neoplasias Óseas/genética , Fibroblastos , Microambiente Tumoral/genética , Colágeno Tipo III
2.
Transl Cancer Res ; 11(10): 3841-3852, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36388032

RESUMEN

Background: Mesenchymal stem cells (MSCs) play a crucial role in osteosarcoma (OS) growth and progression. This study conducted a bioinformatics analysis of a single-cell ribonucleic acid sequencing data set and explored the MSC-specific differentially expressed genes (DEGs) in advanced OS. Methods: MSC-specific DEGs from GSE152048 was extracted using Seurat R package. These DEGs were then subjected to the functional analysis, and several key genes were further identified and underwent a prognosis analysis. Results: A total of 234 upregulated and 280 downregulated DEGs were identified between the MSCs and other cells, and a total of 188 upregulated and 158 downregulated DEGs were identified between the MSCs and osteoblastic cells. The Gene Ontology (GO) functional analysis showed that the specific DEGs between the MSCs and osteoblastic cells were enriched in GO terms such as "collagen catabolic process", "positive regulation of pathway-restricted SMAD protein phosphorylation", "osteoblast differentiation", "regulation of release of cytochrome c from mitochondria" and "interleukin-1 production". The specific DEGs between the MSCs and osteoblastic cells were subjected to a protein-protein interaction network analysis. Further, a survival analysis of 20 genes with combined scores >0.94 revealed that the low expression of ANXA1 (annexin A1) and TPM1 (tropomyosin 1) was associated with the shorter overall survival of OS patients, while the high expression of FDPS (farnesyl pyrophosphate synthase), IFITM5 (interferon-induced transmembrane protein 5), FKBP11 (FKBP prolyl isomerase 11), SP7, and SQLE (squalene epoxidase) was associated with the shorter overall survival of OS patients. In a further analysis, we compared the expression of ANXA1, FDPS, IFITM5, FKBP11, SP7, SQLE, and TPM1 between the MSCs and high-grade OS cells. Further validation studies using the GSE42352 data set revealed that ANXA1, FKBP11, SP7, and TPM1 were more upregulated in the MSCs than the high-grade OS cells, while FDPS, IFITM5, and SQLE were more downregulated in the MSCs than the high-grade OS cells. Conclusions: Our bioinformatics analysis revealed 7 hub genes derived from the specific DEGs between the MSCs and osteoblastic cells. The 7 hub genes may serve as potential prognostic biomarkers for patients with OS.

3.
Rev Sci Instrum ; 90(8): 083109, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31472609

RESUMEN

We present a new method to reduce the image artifacts in defocused hybrid imaging systems with a cubic phase mask. Image artifacts are caused by a mismatch of phase during decoding. A new definition of the Strehl ratio is proposed, and the defocus tolerance of the high-quality decoded image is calculated using this standard. According to the corresponding relationship between the defocus amount and the object distance, we analyze the feasibility of identifying the defocus amount according to distance information obtained by the binocular ranging principle to optimize the decoding process via simulation. Experimental results show that our method can improve image quality over a wide range of defocus.

4.
Appl Opt ; 58(17): 4746-4752, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31251298

RESUMEN

We present a method that simultaneously increases the aperture and depth of field (DOF). A novel, to the best of our knowledge, method called lens-combined wavefront coding (WFC) is proposed for optical design. By rationally balancing rather than minimizing the aberrations, the DOF enhances instead of reduces with expansion of the aperture size. Two optical systems by traditional design and lens-combined WFC are designed to demonstrate our concept. Experiments are conducted using the manufactured lenses to show the extension of the DOF both in the laboratory and the real scene. A spatially invariant deconvolution algorithm is exploited to further suppress the aberrations regarding the field of view. The results show that the aperture and the DOF can be successfully enhanced at the same time.

5.
Appl Opt ; 57(13): 3365-3371, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29726502

RESUMEN

We present a method that combines an asymmetrical phase mask (PM) and its rotated PM to potentially improve the signal-to-noise ratio in wavefront coding systems. The property of the rotated PM is analyzed. A complementary promotional synthetic optical transfer function is generated as the deconvolution filter for image recovery. The image artifacts are suppressed through processing in the frequency domain. Simulation results provide a quantitative analysis that is based on a cubic PM. Experimental results show that our method can improve image quality over a wide range of defocus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...