Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(36): 41361-41368, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36048915

RESUMEN

Spin defects like the negatively charged boron vacancy color center (VB-) in hexagonal boron nitride (hBN) may enable new forms of quantum sensing with near-surface defects in layered van der Waals heterostructures. Here, the effect of strain on VB- color centers in hBN is revealed with correlative cathodoluminescence and photoluminescence microscopies. Strong localized enhancement and redshifting of the VB- luminescence is observed at creases, consistent with density functional theory calculations showing VB- migration toward regions with moderate uniaxial compressive strain. The ability to manipulate spin defects with highly localized strain is critical to the development of practical 2D quantum devices and quantum sensors.

2.
J Phys Chem Lett ; 12(40): 9754-9760, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34592105

RESUMEN

Two-dimensional hybrid organic-inorganic perovskites (HOIPs) have recently drawn intense attention as potential photovoltaic materials. However, n = 1 two-dimensional (2D) HOIPs face the challenge of low conductivity between the inorganic layers, leading to unsatisfactory device performance. Interestingly, 2D HOIPs employing π-conjugated molecules as organic moieties show energy and charge transfers between organic and inorganic layers, indicating potentially efficient carrier transport for photovoltaic applications. Nevertheless, the development of 2D HOIP-based solar cells especially utilizing polycyclic aromatic alkylammonium as cations is in its infancy. Herein, we investigated the electronic structure and band alignment of a series of n = 1 2D Ruddlesden-Popper (RP) phase HOIPs containing different polycyclic aromatic groups and alkyl chains, based on density functional theory calculations. We find that the polycyclic aromatic group plays an important role in controlling the functionality of 2D HOIPs by directly modifying band-edge states, and the band alignment at the organic-inorganic interface can be designed to promote either exciton trapping or dissociation for light-emitting or photovoltaic applications, respectively.

3.
J Phys Chem Lett ; 12(34): 8229-8236, 2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34423990

RESUMEN

Ionically bonded organic metal halide hybrids have emerged as versatile multicomponent material systems exhibiting unique and useful properties. The unlimited combinations of organic cations and metal halides lead to the tremendous structural diversity of this class of materials, which could unlock many undiscovered properties of both organic cations and metal halides. Here we report the synthesis and characterization of a series benzoquinolinium (BZQ) metal halides with a general formula (BZQ)Pb2X5 (X = Cl, Br), in which metal halides form a unique two-dimensional (2D) structure. These BZQ metal halides are found to exhibit enhanced photoluminescence and stability as compared to the pristine BZQ halides, due to the scaffolding effects of 2D metal halides. Optical characterizations and theoretical calculations reveal that BZQ+ cations are responsible for the emissions in these hybrid materials. Changing the halide from Cl to Br introduces heavy atom effects, resulting in yellow room temperature phosphorescence (RTP) from BZQ+ cations.

4.
J Am Chem Soc ; 143(31): 12369-12379, 2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34339219

RESUMEN

The emergence of halide double perovskites significantly increases the compositional space for lead-free and air-stable photovoltaic absorbers compared to halide perovskites. Nevertheless, most halide double perovskites exhibit oversized band gaps (>1.9 eV) or dipole-forbidden optical transition, which are unfavorable for efficient single-junction solar cell applications. The current device performance of halide double perovskite is still inferior to that of lead-based halide perovskites, such as CH3NH3PbI3 (MAPbI3). Here, by ion type inversion and anion ordering on perovskite lattice sites, two new classes of pnictogen-based quaternary antiperovskites with the formula of X6B2AA' and X6BB'A2 are designed. Phase stability and tunable band gaps in these quaternary antiperovskites are demonstrated based on first-principles calculations. Further photovoltaic-functionality-directed screening of these materials leads to the discovery of 5 stable compounds (Ca6N2AsSb, Ca6N2PSb, Sr6N2AsSb, Sr6N2PSb, and Ca6NPSb2) with suitable direct band gaps, small carrier effective masses and low exciton binding energies, and dipole-allowed strong optical absorption, which are favorable properties for a photovoltaic absorber material. The calculated theoretical maximum solar cell efficiencies based on these five compounds are all larger than 29%, comparable to or even higher than that of the MAPbI3 based solar cell. Our work reveals the huge potential of quaternary antiperovskites in the optoelectronic field and provides a new strategy to design lead-free and air-stable perovskite-based photovoltaic absorber materials.

5.
Inorg Chem ; 60(2): 1045-1054, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33397099

RESUMEN

Low-dimensional hybrid organic-inorganic metal halides have received increased attention because of their outstanding optical and electronic properties. However, the most studied hybrid compounds contain lead and have long-term stability issues, which must be addressed for their use in practical applications. Here, we report a new zero-dimensional hybrid organic-inorganic halide, RInBr4, featuring photoemissive trimethyl(4-stilbenyl)methylammonium (R+) cations and nonemissive InBr4- tetrahedral anions. The crystal structure of RInBr4 is composed of alternating layers of inorganic anions and organic cations along the crystallographic a axis. The resultant hybrid demonstrates bright-blue emission with Commission Internationale de l'Eclairage color coordinates of (0.19, 0.20) and a high photoluminescence quantum yield (PLQY) of 16.36% at room temperature, a 2-fold increase compared to the PLQY of 8.15% measured for the precursor organic salt RBr. On the basis of our optical spectroscopy and computational work, the organic component is responsible for the observed blue emission of the hybrid material. In addition to the enhanced light emission efficiency, the novel hybrid indium bromide demonstrates significantly improved environmental stability. These findings may pave the way for the consideration of hybrid organic In(III) halides for light emission applications.

6.
ACS Mater Au ; 1(1): 62-68, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36855617

RESUMEN

Recently, ternary copper(I) halides have emerged as alternatives to lead halide perovskites for light emission applications. Despite their high-efficiency photoluminescence (PL) properties, most copper(I) halides are blue emitters with unusually poor tunability of their PL properties. Here, we report the impact of substitution of copper with silver in the high-efficiency blue-emitting Cu(I) halides through hydrothermal synthesis and characterization of (NH4)2AgX3 (X = Br, I). (NH4)2AgX3 are found to exhibit contrasting light emission properties compared to the blue-emitting Cu(I) analogues. Thus, (NH4)2AgBr3 and (NH4)2AgI3 exhibit broadband whitish light emission at room temperature with PL maxima at 394 and 534 nm and full width at half-maximum values of 142 and 114 nm, respectively. Based on our combined experimental and computational results, the broadband emission in (NH4)2AgX3 is attributed to the presence of high-stability self-trapped excitons and defect-bound excitons. (NH4)2AgBr3 and (NH4)2AgI3 both have significantly improved air and moisture stability as compared to the related copper(I) halides, which are prone to degradation via oxidation. Our results suggest that silver halides should be considered alongside their copper analogues for high-efficiency light emission applications.

7.
J Am Chem Soc ; 142(37): 16001-16006, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32870668

RESUMEN

Low-dimensional perovskite-related metal halides have emerged as a new class of light-emitting materials with tunable broadband emission from self-trapped excitons (STEs). Although various types of low-dimensional structures have been developed, fundamental understating of the structure-property relationships for this class of materials is still very limited, and further improvement of their optical properties remains greatly important. Here, we report a significant pressure-induced photoluminescence (PL) enhancement in a one-dimensional hybrid metal halide C4N2H14PbBr4, and the underlying mechanisms are investigated using in situ experimental characterization and first-principles calculations. Under a gigapascal pressure scale, the PL quantum yields (PLQYs) were quantitatively determined to show a dramatic increase from the initial value of 20% at ambient conditions to over 90% at 2.8 GPa. With in situ characterization of photophysical properties and theoretical analysis, we found that the PLQY enhancement was mainly attributed to the greatly suppressed nonradiative decay. Pressure can effectively tune the energy level of self-trapped states and increase the exciton binding energy, which leads to a larger Stokes shift. The resulting highly localized excitons with stronger binding reduce the probability for carrier scattering, to result in the significantly suppressed nonradiative decay. Our findings clearly show that the characteristics of STEs in low-dimensional metal halides can be well-tuned by external pressure, and enhanced optical properties can be achieved.

8.
Sci Adv ; 6(37)2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32917707

RESUMEN

Halide perovskites have undergone remarkable developments as highly efficient optoelectronic materials for a variety of applications. Several studies indicated the critical role of defects on the performance of perovskite devices. However, the parameters of defects and their interplay with free charge carriers remain unclear. In this study, we explored the dynamics of free holes in methylammonium lead tribromide (MAPbBr3) single crystals using the time-of-flight (ToF) current spectroscopy. By combining ToF spectroscopy and Monte Carlo simulation, three energy states were detected in the bandgap of MAPbBr3 In addition, we found the trapping and detrapping rates of free holes ranging from a few microseconds to hundreds of microseconds. Contrary to previous studies, we revealed a strong detrapping activity of traps. We showed that these traps substantially affect the transport properties of MAPbBr3, including mobility and mobility-lifetime product. Our results provide an insight on charge transport properties of perovskite semiconductors.

9.
Phys Chem Chem Phys ; 21(45): 25108-25117, 2019 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-31691694

RESUMEN

Phosphors that emit in the deep-red spectral region are critical for plant cultivation light-emitting diodes. Herein, ultrabroadband deep-red luminescence of Mn4+ in La4Ti3O12 was studied, which showed intense zero phonon line emission. The double-perovskite structural La4Ti3O12 simultaneously contains two Ti4+ sites forming slightly- and highly-distorted TiO6 octahedra, respectively. The influence of octahedral distortion on the Mn4+ emission energy in the two distinct Ti4+ sites was studied both experimentally and theoretically. The spectral measurements indicated that Mn4+ in La4Ti3O12 showed intense zero phonon line emission (ZPL) at deep-red 710-740 nm under excitation of 400 nm charging the O2-→ Mn4+ charge transfer transition. The splitting of the ZPL of the Mn4+ 2Eg→4A2g transition as well as the intensity of ZPL relative to the vibronic phonon sideband emissions were found to be greatly influenced by the degree of octahedral distortion. The crystal-field strength and Racah parameters of Mn4+ in each Ti4+ site were also estimated. The Mn4+ 2Eg→4A2g luminescence exhibited severe thermal quenching, which was explained by the low-lying 4T2g level and charge-transfer state.

10.
J Chem Phys ; 151(18): 181101, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31731850

RESUMEN

Low-dimensional halide perovskites exhibit intriguing excitonic properties and emerge as an important class of self-activated luminescent materials. However, the ability to manipulate and optimize their luminescent properties is limited by the lack of the microscopic understanding of the exciton relaxation and emission and the inconsistency in the theoretical results in the literature. In this work, based on first-principles calculations, we studied excitons in 1D lead halide perovskites, C4N2H14PbBr4 and C4N2H14PbCl4, which are both bright visible-light emitters. We find that, in both compounds, the polaron-pair exciton (EX-PP) is more stable than the onsite exciton (EX-OS) and only the EX-PP emission energy from the calculation is close to the main photoluminescence (PL) peak observed in the experiment. The EX-OS is found to emit UV light in both compounds. Therefore, the EX-PP is responsible for the experimentally observed visible light emission in both C4N2H14PbBr4 and C4N2H14PbCl4. Furthermore, the calculated small energy difference between the EX-PP and EX-OS in C4N2H14PbBr4 suggests that the metastable EX-OS can be thermally populated at room temperature (RT); the calculated EX-OS emission energy agrees well with the energy of a minor PL peak observed at RT but not at 77 K. The validity our approach in the exciton calculation is supported by the benchmark of the calculated exciton emission energies against the experimental results in 13 0D and 1D metal halides. The discrepancies between this work and a recent theoretical study in the literature are also discussed.

11.
Chemistry ; 25(42): 9875-9884, 2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31087790

RESUMEN

Perovskite solar cells have recently enabled power conversion efficiency comparable to established technologies such as silicon and cadmium telluride. Ongoing efforts to improve the stability of halide perovskites in ambient air has yielded promising results. However, the presence of toxic heavy element lead (Pb) remains a major concern requiring further attention. Herein, we report three new Pb-free hybrid organic-inorganic perovskite-type halides based on gold (Au), (CH3 NH3 )AuBr4 ⋅H2 O (1), (CH3 NH3 )AuCl4 ⋅H2 O (2), and (CH3 NH3 )AuCl4 (3). Hydrated compounds 1 and 2 crystallize in a brand-new structure type featuring perovskite-derived 2D layers and 1D chains based on pseudo-octahedral AuX6 building blocks. In contrast, the novel crystal structure of the solvent-free compound 3 shows an exotic non-perovskite quasi-2D layered structure containing edge- and corner-shared AuCl6 octahedra. The use of Au metal instead of Pb results in unprecedented low band gaps below 2.5 eV for single-layered metal chlorides and bromides. Moreover, at room temperature the three compounds show a weak blue emission due to the electronic transition between Au-6s and Au-5d, in agreement with the density function theory (DFT) calculation results. These findings are discussed in the context of viability of Au-based halides as alternatives for Pb-based halides for optoelectronic applications.

12.
Inorg Chem ; 58(7): 4446-4455, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30767513

RESUMEN

Replacement of the toxic heavy element lead in metal halide perovskites has been attracting a great interest because the high toxicity and poor air stability are two of the major barriers for their widespread utilization. Recently, mixed-cation double perovskite halides, also known as elpasolites, were proposed as an alternative lead-free candidate for the design of nontoxic perovskite solar cells. Herein, we report a new nontoxic and air stable lead-free all-inorganic semiconductor Rb4Ag2BiBr9 prepared using the mixed-cation approach; however, Rb4Ag2BiBr9 adopts a new structure type (Pearson's code oP32) featuring BiBr6 octahedra and AgBr5 square pyramids that share common edges and corners to form a unique 2D layered non-perovskite structure. Rb4Ag2BiBr9 is also demonstrated to be thermally stable with the measured onset decomposition temperature of To = 520 °C. Optical absorption measurements and density functional theory calculations suggest a nearly direct band gap for Rb4Ag2BiBr9. Room temperature photoluminescence (PL) measurements show a broadband weak emission. Further, temperature-dependent and power-dependent PL measurements show a strong competition between multiple emission centers and suggest the coexistence of defect-bound excitons and self-trapped excitons in Rb4Ag2BiBr9.

13.
J Phys Chem Lett ; 10(1): 67-74, 2019 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-30418779

RESUMEN

Accurate excitation energies of localized defects have been a long-standing problem for electronic structure calculation methods. Using Mn4+-doped solids as our proof of principle, we show that diffusion quantum Monte Carlo (DMC) is able to predict phosphorescence emission energies within statistical error. To demonstrate the generality of our DMC approach for other possible localized defects, we conduct charge density analyses using DMC and density functional theory (DFT). We also identify a new material with an emission energy of 1.97(8) eV, which is close to the optimum of 2.03 eV for a red-emitting phosphor. To our knowledge, our work is the first report on studying excitation energies of a transition metal impurity using an ab initio many-body electronic structure method. In contrast, semilocal and hybrid-DFT largely underestimates, and fails to reproduce, some of the trends in the emission energies. Our work underscores the importance of an accurate account of exchange, correlation, and excitonic effects for localized excitations in defective solids.

14.
Phys Rev Lett ; 121(10): 105901, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-30240242

RESUMEN

BAs was predicted to have an unusually high thermal conductivity with a room temperature value of 2000 W m^{-1} K^{-1}, comparable to that of diamond. However, the experimentally measured thermal conductivity of BAs single crystals is still lower than this value. To identify the origin of this large inconsistency, we investigate the lattice structure and potential defects in BAs single crystals at the atomic scale using aberration-corrected scanning transmission electron microscopy (STEM). Rather than finding a large concentration of As vacancies (V_{As}), as widely thought to dominate the thermal resistance in BAs, our STEM results show an enhanced intensity of some B columns and a reduced intensity of some As columns, suggesting the presence of antisite defects with As_{B} (As atom on a B site) and B_{As} (B atom on an As site). Additional calculations show that the antisite pair with As_{B} next to B_{As} is preferred energetically among the different types of point defects investigated and confirm that such defects lower the thermal conductivity for BAs. Using a concentration of 1.8(8)% (6.6±3.0×10^{20} cm^{-3} in density) for the antisite pairs estimated from STEM images, the thermal conductivity is estimated to be 65-100 W m^{-1} K^{-1}, in reasonable agreement with our measured value. Our study suggests that As_{B}-B_{As} antisite pairs are the primary lattice defects suppressing thermal conductivity of BAs. Possible approaches are proposed for the growth of high-quality crystals or films with high thermal conductivity. Employing a combination of state-of-the-art synthesis, STEM characterization, theory, and physical insight, this work models a path toward identifying and understanding defect-limited material functionality.

16.
Adv Mater ; 30(22): e1705801, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29660765

RESUMEN

A fundamental understanding of the interplay between the microscopic structure and macroscopic optoelectronic properties of organic-inorganic hybrid perovskite materials is essential to design new materials and improve device performance. However, how exactly the organic cations affect the structural phase transition and optoelectronic properties of the materials is not well understood. Here, real-time, in situ temperature-dependent neutron/X-ray diffraction and photoluminescence (PL) measurements reveal a transformation of the organic cation CH3 NH3+ from order to disorder with increasing temperature in CH3 NH3 PbBr3 perovskites. The molecular-level order-to-disorder transformation of CH3 NH3+ not only leads to an anomalous increase in PL intensity, but also results in a multidomain to single-domain structural transition. This discovery establishes the important role that organic cation ordering has in dictating structural order and anomalous optoelectronic phenomenon in hybrid perovskites.

17.
J Phys Chem Lett ; 9(9): 2164-2169, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29637785

RESUMEN

Excitons in low-dimensional organic-inorganic metal halide hybrid structures are commonly thought to undergo rapid self-trapping following creation due to strong quantum confinement and exciton-phonon interaction. Here we report an experimental study probing the dynamics of these self-trapped excitons in the single-crystalline bulk assemblies of 1D organic metal halide nanotubes, (C6H13N4)3Pb2Br7. Through time-resolved photoluminescence (PL) measurements at different excitation intensities, we observed a marked variation in the PL decay behavior that is manifested by an accelerated decay rate with increasing excitation fluence. Our results offer direct evidence of the occurrence of an exciton-exciton annihilation process, a nonlinear relaxation phenomenon that takes place only when some of the self-trapped excitons become mobile and can approach either each other or those trapped excitons. We further identify a fast and dominant PL decay component with a lifetime of ∼2 ns with a nearly invariant relative area for all acquired PL kinetics, suggesting that this rapid relaxation process is intrinsic.

18.
Adv Sci (Weinh) ; 5(2): 1700662, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29610728

RESUMEN

Solar cells based on methylammonium lead triiodide (MAPbI3) have shown remarkable progress in recent years and have demonstrated efficiencies greater than 20%. However, the long-term stability of MAPbI3-based solar cells has yet to be achieved. Besides the well-known chemical and thermal instabilities, significant native ion migration in lead halide perovskites leads to current-voltage hysteresis and photoinduced phase segregation. Recently, it is further revealed that, despite having excellent chemical stability, the Au electrode can cause serious solar cell degradation due to Au diffusion into MAPbI3. In addition to Au, many other metals have been used as electrodes in MAPbI3 solar cells. However, how the external metal impurities introduced by electrodes affect the long-term stability of MAPbI3 solar cells has rarely been studied. A comprehensive study of formation energetics and diffusion dynamics of a number of noble and transition metal impurities (Au, Ag, Cu, Cr, Mo, W, Co, Ni, Pd) in MAPbI3 based on first-principles calculations is reported herein. The results uncover important general trends of impurity formation and diffusion in MAPbI3 and provide useful guidance for identifying the optimal metal electrodes that do not introduce electrically active impurity defects in MAPbI3 while having low resistivities and suitable work functions for carrier extraction.

19.
ACS Omega ; 3(12): 18791-18802, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458442

RESUMEN

We report syntheses, crystal and electronic structures, and characterization of three new hybrid organic-inorganic halides (R)ZnBr3(DMSO), (R)2CdBr4·DMSO, and (R)CdI3(DMSO) (where (R) = C6(CH3)5CH2N(CH3)3, and DMSO = dimethyl sulfoxide). The compounds can be conveniently prepared as single crystals and bulk polycrystalline powders using a DMSO-methanol solvent system. On the basis of the single-crystal X-ray diffraction results carried out at room temperature and 100 K, all compounds have zero-dimensional (0D) crystal structures featuring alternating layers of bulky organic cations and molecular inorganic anions based on a tetrahedral coordination around group 12 metal cations. The presence of discrete molecular building blocks in the 0D structures results in localized charges and tunable room-temperature light emission, including white light for (R)ZnBr3(DMSO), bluish-white light for (R)2CdBr4·DMSO, and green for (R)CdI3(DMSO). The highest photoluminescence quantum yield (PLQY) value of 3.07% was measured for (R)ZnBr3(DMSO), which emits cold white light based on the calculated correlated color temperature (CCT) of 11,044 K. All compounds exhibit fast photoluminescence lifetimes on the timescale of tens of nanoseconds, consistent with the fast luminescence decay observed in π-conjugated organic molecules. Temperature dependence photoluminescence study showed the appearance of additional peaks around 550 nm, resulting from the organic salt emission. Density functional theory calculations show that the incorporation of both the low-gap aromatic molecule R and the relatively electropositive Zn and Cd metals can lead to exciton localization at the aromatic molecular cations, which act as luminescence centers.

20.
Angew Chem Int Ed Engl ; 57(4): 1021-1024, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29215786

RESUMEN

The synthesis and characterization is reported of (C9 NH20 )2 SnBr4 , a novel organic metal halide hybrid with a zero-dimensional (0D) structure, in which individual seesaw-shaped tin (II) bromide anions (SnBr42- ) are co-crystallized with 1-butyl-1-methylpyrrolidinium cations (C9 NH20+ ). Upon photoexcitation, the bulk crystals exhibit a highly efficient broadband deep-red emission peaked at 695 nm, with a large Stokes shift of 332 nm and a high quantum efficiency of around 46 %. The unique photophysical properties of this hybrid material are attributed to two major factors: 1) the 0D structure allowing the bulk crystals to exhibit the intrinsic properties of individual SnBr42- species, and 2) the seesaw structure enabling a pronounced excited state structural deformation as confirmed by density functional theory (DFT) calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...