Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37176399

RESUMEN

The stability of the graphite seal device is a key factor for the normal operation of aero engines. However, conventional graphite exhibits poor comprehensive performance due to its porous structure, which limits its application at high temperatures. Therefore, in this paper, phosphate was used to impregnated graphite pores, and the interaction between the friction, wear, and oxidation of phosphate-impregnated graphite against superalloy at high temperatures was studied through pin-on-disk friction tests. The results revealed that the coefficient of friction (COF) of matrix graphite fluctuated greatly, from 0.07 to 0.17, in the range of 100 °C to 500 °C, while the COF of impregnated graphite was stable, at around 0.13, from 100 °C to 500 °C. The wear rates of the two types of graphite were close from 20 °C to 300 °C, while the wear rate of the impregnated graphite was significantly lower than that of the matrix graphite at higher temperatures, from 400 °C and 500 °C. The reason was that the impregnated phosphate reacted with graphite at a high temperature, forming the inert site which helped to inhibit the oxidation and maintain the mechanical properties of the impregnated graphite at high temperatures. In addition, the impregnated graphite could maintain better integrity of the contact surface and reduce the inclusion of large hard metal oxides, thus effectively reducing the abrasive wear of the disk. Therefore, the wear depth of the superalloy disk samples with impregnated graphite was significantly lower than that of the matrix graphite. The results promote the application of phosphate-impregnated graphite under the high temperature conditions of aero engines.

2.
Mater Sci Eng C Mater Biol Appl ; 37: 292-304, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24582252

RESUMEN

In this work, wear resistance of a Zr61Ti2Cu25Al12 (ZT1) bulk metallic glass (BMG) in dry-sliding and simulated physiological media was investigated using ball-on-flat tribological approach and Si3N4 ball as counterpart. It was indicated that wear resistance of the BMG in air and deionized water is superior to Ti6Al4V alloy but inferior to 316L stainless steel (316L SS) and Co28Cr6Mo (CoCrMo) alloy. However, under simulated physiological media such as phosphate buffered solution (PBS) and Dulbecco's modified Eagle medium with 10vol.% fetal bovine serum (DMEM+FBS), the ZT1 BMG exhibits decreased wear resistance in comparison with the Ti6Al4V, 316L SS and CoCrMo. This is probably associated with its moderate pitting corrosion resistance in the medium containing chloride ions. The presence of protein in the solution has a significant effect to ruin pitting resistance of the BMG, then causing more severe wear damage. Under the dry-wear condition, abrasive wear is a predominant wear mechanism for the ZT1, whereas under deionized water, deterioration induced by abrasive wear can be mitigated. In simulated physiological media, wear deterioration is a typical tribocorrosion controlled by synergistic effects of the abrasive and corrosive wear. For the four investigated metals, wear resistance does not exhibit distinct correlation with hardness, whereas the material with high Young's modulus possesses better wear resistance.


Asunto(s)
Aleaciones/química , Vidrio/química , Metales/química , Animales , Bovinos , Corrosión , Módulo de Elasticidad , Albúmina Sérica Bovina/química , Albúmina Sérica Bovina/metabolismo , Compuestos de Silicona/química , Acero Inoxidable/química , Titanio/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...