Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36839690

RESUMEN

Doxorubicin (DOX) is a potent chemotherapeutic drug used as the first line in breast cancer treatment; however, cardiotoxicity is the main drawback of the therapy. Preclinical studies evidenced that the association of simvastatin (SIM) with DOX leads to a better prognosis with reduced side effects and deaths. In this work, a novel pH-sensitive liposomal formulation capable of co-encapsulating DOX and SIM at different molar ratios was investigated for its potential in breast tumor treatment. Studies on physicochemical characterization of the liposomal formulations were carried out. The cytotoxic effects of DOX, SIM, and their combinations at different molar ratios (1:1; 1:2 and 2:1), free or co-encapsulated into pH-sensitive liposomes, were evaluated against three human breast cancer cell lines (MDA-MB-231, MCF-7, and SK-BR-3). Experimental protocols included cell viability, combination index, nuclear morphological changes, and migration capacity. The formulations showed a mean diameter of less than 200 nm, with a polydispersity index lower than 0.3. The encapsulation content was ~100% and ~70% for DOX and SIM, respectively. A more pronounced inhibitory effect on breast cancer cell lines was observed at a DOX:SIM molar ratio of 2:1 in both free and encapsulated drugs. Furthermore, the 2:1 ratio showed synergistic combination rates for all concentrations of cell inhibition analyzed (50, 75, and 90%). The results demonstrated the promising potential of the co-encapsulated liposome for breast tumor treatment.

2.
Biomed Pharmacother ; 141: 111858, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34323700

RESUMEN

Statins, typically used to reduce lipid levels, have been rediscovered for exhibiting anticancer activities. Among them, especially simvastatin may influence the proliferation, migration, and survival of cancer cells. The concept of using statins to treat cancer has been adopted since the 1990s In vitro and in vivo experiments and cohort studies using statins have been carried out to demonstrate their antitumor effects (such as proliferation and migration impairment) by influencing inflammatory and oxidative stress-related tumorigenesis. Nevertheless, the biological mechanisms for these actions are not fully elucidated. In this review, we present an overview of the most important studies conducted from 2015 to date on the use of simvastatin in cancer therapy. This review brings the most recent perspectives and targets in epidemiological, in vitro, and in vivo studies, regarding the use of simvastatin alone or in combination with other drugs for the treatment of various types of cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Neoplasias/tratamiento farmacológico , Simvastatina/uso terapéutico , Animales , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Simvastatina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA