Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 6(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37468166

RESUMEN

Fun30 is the prototype of the Fun30-SMARCAD1-ETL subfamily of nucleosome remodelers involved in DNA repair and gene silencing. These proteins appear to act as single-subunit nucleosome remodelers, but their molecular mechanisms are, at this point, poorly understood. Using multiple sequence alignment and structure prediction, we identify an evolutionarily conserved domain that is modeled to contain a SAM-like fold with one long, protruding helix, which we term SAM-key. Deletion of the SAM-key within budding yeast Fun30 leads to a defect in DNA repair and gene silencing similar to that of the fun30Δ mutant. In vitro, Fun30 protein lacking the SAM-key is able to bind nucleosomes but is deficient in DNA-stimulated ATPase activity and nucleosome sliding and eviction. A structural model based on AlphaFold2 prediction and verified by crosslinking-MS indicates an interaction of the long SAM-key helix with protrusion I, a subdomain located between the two ATPase lobes that is critical for control of enzymatic activity. Mutation of the interaction interface phenocopies the domain deletion with a lack of DNA-stimulated ATPase activation and a nucleosome-remodeling defect, thereby confirming a role of the SAM-key helix in regulating ATPase activity. Our data thereby demonstrate a central role of the SAM-key domain in mediating the activation of Fun30 catalytic activity, thus highlighting the importance of allosteric activation for this class of enzymes.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Nucleosomas/genética , Nucleosomas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo
2.
Elife ; 112022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36098381

RESUMEN

The rapid development of new imaging approaches is generating larger and more complex datasets, revealing the time evolution of individual cells and biomolecules. Single-molecule techniques, in particular, provide access to rare intermediates in complex, multistage molecular pathways. However, few standards exist for processing these information-rich datasets, posing challenges for wider dissemination. Here, we present Mars, an open-source platform for storing and processing image-derived properties of biomolecules. Mars provides Fiji/ImageJ2 commands written in Java for common single-molecule analysis tasks using a Molecule Archive architecture that is easily adapted to complex, multistep analysis workflows. Three diverse workflows involving molecule tracking, multichannel fluorescence imaging, and force spectroscopy, demonstrate the range of analysis applications. A comprehensive graphical user interface written in JavaFX enhances biomolecule feature exploration by providing charting, tagging, region highlighting, scriptable dashboards, and interactive image views. The interoperability of ImageJ2 ensures Molecule Archives can easily be opened in multiple environments, including those written in Python using PyImageJ, for interactive scripting and visualization. Mars provides a flexible solution for reproducible analysis of image-derived properties, facilitating the discovery and quantitative classification of new biological phenomena with an open data format accessible to everyone.


Asunto(s)
Diagnóstico por Imagen , Programas Informáticos , Fiji , Imagen Individual de Molécula , Flujo de Trabajo
3.
Nature ; 606(7912): 197-203, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35585235

RESUMEN

Eukaryotic genomes are compacted into loops and topologically associating domains (TADs)1-3, which contribute to transcription, recombination and genomic stability4,5. Cohesin extrudes DNA into loops that are thought to lengthen until CTCF boundaries are encountered6-12. Little is known about whether loop extrusion is impeded by DNA-bound machines. Here we show that the minichromosome maintenance (MCM) complex is a barrier that restricts loop extrusion in G1 phase. Single-nucleus Hi-C (high-resolution chromosome conformation capture) of mouse zygotes reveals that MCM loading reduces CTCF-anchored loops and decreases TAD boundary insulation, which suggests that loop extrusion is impeded before reaching CTCF. This effect extends to HCT116 cells, in which MCMs affect the number of CTCF-anchored loops and gene expression. Simulations suggest that MCMs are abundant, randomly positioned and partially permeable barriers. Single-molecule imaging shows that MCMs are physical barriers that frequently constrain cohesin translocation in vitro. Notably, chimeric yeast MCMs that contain a cohesin-interaction motif from human MCM3 induce cohesin pausing, indicating that MCMs are 'active' barriers with binding sites. These findings raise the possibility that cohesin can arrive by loop extrusion at MCMs, which determine the genomic sites at which sister chromatid cohesion is established. On the basis of in vivo, in silico and in vitro data, we conclude that distinct loop extrusion barriers shape the three-dimensional genome.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona , ADN , Proteínas de Mantenimiento de Minicromosoma , Animales , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN/química , ADN/metabolismo , Fase G1 , Células HCT116 , Humanos , Ratones , Componente 3 del Complejo de Mantenimiento de Minicromosoma/química , Componente 3 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/química , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Conformación de Ácido Nucleico , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Cohesinas
4.
Cell Rep ; 38(12): 110531, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35320708

RESUMEN

Fundamental to our understanding of chromosome duplication is the idea that replication origins function both as sites where MCM helicases are loaded during the G1 phase and where synthesis begins in S phase. However, the temporal delay between phases exposes the replisome assembly pathway to potential disruption prior to replication. Using multicolor, single-molecule imaging, we systematically study the consequences of encounters between actively transcribing RNA polymerases (RNAPs) and replication initiation intermediates in the context of chromatin. We demonstrate that RNAP can push multiple licensed MCM helicases over long distances with nucleosomes ejected or displaced. Unexpectedly, we observe that MCM helicase loading intermediates also can be repositioned by RNAP and continue origin licensing after encounters with RNAP, providing a web of alternative origin specification pathways. Taken together, our observations reveal a surprising mobility in origin-licensing factors that confers resistance to the complex challenges posed by diverse obstacles encountered on chromosomes.


Asunto(s)
Replicación del ADN , Origen de Réplica , Proteínas de Ciclo Celular/metabolismo , Cromatina , ADN Helicasas/metabolismo , Replicación del ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Origen de Réplica/genética
5.
Nucleic Acids Res ; 50(3): 1317-1334, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35061899

RESUMEN

Chromosome replication depends on efficient removal of nucleosomes by accessory factors to ensure rapid access to genomic information. Here, we show this process requires recruitment of the nucleosome reorganization activity of the histone chaperone FACT. Using single-molecule FRET, we demonstrate that reorganization of nucleosomal DNA by FACT requires coordinated engagement by the middle and C-terminal domains of Spt16 and Pob3 but does not require the N-terminus of Spt16. Using structure-guided pulldowns, we demonstrate instead that the N-terminal region is critical for recruitment by the fork protection complex subunit Tof1. Using in vitro chromatin replication assays, we confirm the importance of these interactions for robust replication. Our findings support a mechanism in which nucleosomes are removed through the coordinated engagement of multiple FACT domains positioned at the replication fork by the fork protection complex.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Replicación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Nucleosomas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Elongación Transcripcional/genética
6.
Small ; 17(18): e2007388, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33759372

RESUMEN

Cytoskeletal motors transform chemical energy into mechanical work to drive essential cellular functions. Optical trapping experiments have provided crucial insights into the operation of these molecular machines under load. However, the throughput of such force spectroscopy experiments is typically limited to one measurement at a time. Here, a highly-parallel, microfluidics-based method that allows for rapid collection of force-dependent motility parameters of cytoskeletal motors with two orders of magnitude improvement in throughput compared to currently available methods is introduced. Tunable hydrodynamic forces to stepping kinesin-1 motors via DNA-tethered beads and utilize a large field of view to simultaneously track the velocities, run lengths, and interaction times of hundreds of individual kinesin-1 molecules under varying resisting and assisting loads are applied. Importantly, the 16 µm long DNA tethers between the motors and the beads significantly reduces the vertical component of the applied force pulling the motors away from the microtubule. The approach is readily applicable to other molecular systems and constitutes a new methodology for parallelized single-molecule force studies on cytoskeletal motors.


Asunto(s)
Cinesinas , Microfluídica , Citoesqueleto , Microtúbulos , Análisis Espectral
7.
Science ; 371(6528)2021 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33243852

RESUMEN

Inflammasomes function as intracellular sensors of pathogen infection or cellular perturbation and thereby play a central role in numerous diseases. Given the high abundance of NLRP1 in epithelial barrier tissues, we screened a diverse panel of viruses for inflammasome activation in keratinocytes. We identified Semliki Forest virus (SFV), a positive-strand RNA virus, as a potent activator of human but not murine NLRP1B. SFV replication and the associated formation of double-stranded (ds) RNA was required to engage the NLRP1 inflammasome. Moreover, delivery of long dsRNA was sufficient to trigger activation. Biochemical studies revealed that NLRP1 binds dsRNA through its leucine-rich repeat domain, resulting in its NACHT domain gaining adenosine triphosphatase activity. Altogether, these results establish human NLRP1 as a direct sensor for dsRNA and thus RNA virus infection.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata , Inflamasomas/inmunología , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Infecciones por Alphavirus/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/química , Células HEK293 , Humanos , Hidrólisis , Inflamasomas/metabolismo , Queratinocitos/inmunología , Queratinocitos/metabolismo , Queratinocitos/virología , Ratones , Ratones Transgénicos , Proteínas NLR , Dominios Proteicos , Virus de los Bosques Semliki/inmunología , Virus de los Bosques Semliki/fisiología , Replicación Viral
8.
Nat Commun ; 11(1): 4714, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948754

RESUMEN

The application of forces and torques on the single molecule level has transformed our understanding of the dynamic properties of biomolecules, but rare intermediates have remained difficult to characterize due to limited throughput. Here, we describe a method that provides a 100-fold improvement in the throughput of force spectroscopy measurements with topological control, which enables routine imaging of 50,000 single molecules and a 100 million reaction cycles in parallel. This improvement enables detection of rare events in the life cycle of the cell. As a demonstration, we characterize the supercoiling dynamics and drug-induced DNA break intermediates of topoisomerases. To rapidly quantify distinct classes of dynamic behaviors and rare events, we developed a software platform with an automated feature classification pipeline. The method and software can be readily adapted for studies of a broad range of complex, multistep enzymatic pathways in which rare intermediates have escaped classification due to limited throughput.


Asunto(s)
ADN/química , Fenómenos Magnéticos , Magnetismo/métodos , Nanotecnología , Análisis Espectral/métodos , Ciprofloxacina/farmacología , ADN/efectos de los fármacos , Roturas del ADN/efectos de los fármacos , Conformación de Ácido Nucleico , Pinzas Ópticas , Fenómenos Físicos , Programas Informáticos
10.
J Chem Phys ; 148(12): 123317, 2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29604840

RESUMEN

Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.


Asunto(s)
Algoritmos , Nanotecnología , Cinética , Movimiento (Física)
11.
Biophys J ; 115(2): 165-166, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29397876
12.
Bioessays ; 40(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29282758

RESUMEN

The astonishing efficiency and accuracy of DNA replication has long suggested that refined rules enforce a single highly reproducible sequence of molecular events during the process. This view was solidified by early demonstrations that DNA unwinding and synthesis are coupled within a stable molecular factory, known as the replisome, which consists of conserved components that each play unique and complementary roles. However, recent single-molecule observations of replisome dynamics have begun to challenge this view, revealing that replication may not be defined by a uniform sequence of events. Instead, multiple exchange pathways, pauses, and DNA loop types appear to dominate replisome function. These observations suggest we must rethink our fundamental assumptions and acknowledge that each replication cycle may involve sampling of alternative, sometimes parallel, pathways. Here, we review our current mechanistic understanding of DNA replication while highlighting findings that exemplify multi-pathway aspects of replisome function and considering the broader implications.


Asunto(s)
Replicación del ADN , Imagen Individual de Molécula/métodos , ADN Helicasas/química , Redes y Vías Metabólicas
13.
Elife ; 62017 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-28432790

RESUMEN

The Escherichia coli DNA replication machinery has been used as a road map to uncover design rules that enable DNA duplication with high efficiency and fidelity. Although the enzymatic activities of the replicative DNA Pol III are well understood, its dynamics within the replisome are not. Here, we test the accepted view that the Pol III holoenzyme remains stably associated within the replisome. We use in vitro single-molecule assays with fluorescently labeled polymerases to demonstrate that the Pol III* complex (holoenzyme lacking the ß2 sliding clamp), is rapidly exchanged during processive DNA replication. Nevertheless, the replisome is highly resistant to dilution in the absence of Pol III* in solution. We further show similar exchange in live cells containing labeled clamp loader and polymerase. These observations suggest a concentration-dependent exchange mechanism providing a balance between stability and plasticity, facilitating replacement of replisomal components dependent on their availability in the environment.


Asunto(s)
ADN Polimerasa III/metabolismo , Replicación del ADN , Escherichia coli/enzimología , Microscopía Fluorescente , Modelos Biológicos , Imagen Individual de Molécula
14.
Mol Cell ; 64(6): 1035-1047, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27889453

RESUMEN

The molecular machinery responsible for DNA replication, the replisome, must efficiently coordinate DNA unwinding with priming and synthesis to complete duplication of both strands. Due to the anti-parallel nature of DNA, the leading strand is copied continuously, while the lagging strand is produced by repeated cycles of priming, DNA looping, and Okazaki-fragment synthesis. Here, we report a multidimensional single-molecule approach to visualize this coordination in the bacteriophage T7 replisome by simultaneously monitoring the kinetics of loop growth and leading-strand synthesis. We show that loops in the lagging strand predominantly occur during priming and only infrequently support subsequent Okazaki-fragment synthesis. Fluorescence imaging reveals polymerases remaining bound to the lagging strand behind the replication fork, consistent with Okazaki-fragment synthesis behind and independent of the replication complex. Individual replisomes display both looping and pausing during priming, reconciling divergent models for the regulation of primer synthesis and revealing an underlying plasticity in replisome operation.


Asunto(s)
Bacteriófago T7/genética , ADN Primasa/genética , Replicación del ADN , ADN Viral/genética , Bacteriófago T7/metabolismo , Bacteriófago T7/ultraestructura , ADN/biosíntesis , ADN/genética , ADN Primasa/metabolismo , ADN Primasa/ultraestructura , ADN Viral/metabolismo , ADN Viral/ultraestructura , Cinética , Imagen Individual de Molécula/métodos , Imagen de Lapso de Tiempo/métodos
15.
Nucleic Acids Res ; 44(10): 4846-54, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27112565

RESUMEN

Multi-component biological machines, comprising individual proteins with specialized functions, perform a variety of essential processes in cells. Once assembled, most such complexes are considered very stable, retaining individual constituents as long as required. However, rapid and frequent exchange of individual factors in a range of critical cellular assemblies, including DNA replication machineries, DNA transcription regulators and flagellar motors, has recently been observed. The high stability of a multi-protein complex may appear mutually exclusive with rapid subunit exchange. Here, we describe a multisite competitive exchange mechanism, based on simultaneous binding of a protein to multiple low-affinity sites. It explains how a component can be stably integrated into a complex in the absence of competing factors, while able to rapidly exchange in the presence of competing proteins. We provide a mathematical model for the mechanism and give analytical expressions for the stability of a pre-formed complex, in the absence and presence of competitors. Using typical binding kinetic parameters, we show that the mechanism is operational under physically realistic conditions. Thus, high stability and rapid exchange within a complex can be reconciled and this framework can be used to rationalize previous observations, qualitatively as well as quantitatively.


Asunto(s)
Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/metabolismo , Complejos Multienzimáticos/metabolismo , Sitios de Unión , Unión Competitiva , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/química , ADN Polimerasa Dirigida por ADN/química , Cinética , Modelos Biológicos , Complejos Multienzimáticos/química , Unión Proteica
16.
Methods Mol Biol ; 1300: 219-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25916715

RESUMEN

Replication of DNA requires the coordinated activity of a number of proteins within a multiprotein complex, the replisome. Recent advances in single-molecule techniques have enabled the observation of dynamic behavior of individual replisome components and of the replisome as a whole, aspects that previously often have been obscured by ensemble averaging in more classical solution-phase biochemical experiments. To improve robustness and reproducibility of single-molecule assays of replication and allow objective analysis and comparison of results obtained from such assays, common practices should be established. Here, we describe the technical details of two assays to study replisome activity. In one, the kinetics of replication are observed as length changes in DNA molecules mechanically stretched by a laminar flow applied to attached beads. In the other, fluorescence imaging is used to determine both the kinetics and stoichiometry of individual replisome components. These in vitro single-molecule methods allow for elucidation of the dynamic behavior of individual replication proteins of prokaryotic replication systems.


Asunto(s)
Replicación del ADN , Imagen Molecular/métodos , Células Procariotas/metabolismo , ADN/metabolismo , Microesferas , Estadística como Asunto
17.
Artículo en Inglés | MEDLINE | ID: mdl-23881939

RESUMEN

The proliferation of all organisms depends on the coordination of enzymatic events within large multiprotein replisomes that duplicate chromosomes. Whereas the structure and function of many core replisome components have been clarified, the timing and order of molecular events during replication remains obscure. To better understand the replication mechanism, new methods must be developed that allow for the observation and characterization of short-lived states and dynamic events at single replication forks. Over the last decade, great progress has been made toward this goal with the development of novel DNA nanomanipulation and fluorescence imaging techniques allowing for the direct observation of replication-fork dynamics both reconstituted in vitro and in live cells. This article reviews these new single-molecule approaches and the revised understanding of replisome operation that has emerged.


Asunto(s)
Replicación del ADN , ADN/química , Transferencia Resonante de Energía de Fluorescencia
18.
Curr Opin Struct Biol ; 23(1): 144-53, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23266000

RESUMEN

ATP-dependent initiation factors help process replication origins and coordinate replisome assembly to control the onset of DNA synthesis. Although the specific properties and regulatory mechanisms of initiator proteins can vary greatly between different organisms, certain nucleotide-binding elements and assembly patterns appear preserved not only within the three domains of cellular life (bacteria, archaea, and eukaryotes), but also with certain classes of double-stranded DNA viruses. Structural studies of replication initiation proteins, both as higher-order oligomers and in complex with cognate DNA substrates, are revealing how an evolutionarily related ATPase fold can support different modes of macromolecular assembly and function. Comparative studies between initiation systems in turn provide clues as to how duplex origin regions may be melted during initiation events.


Asunto(s)
Metaloendopeptidasas/química , Metaloendopeptidasas/metabolismo , Origen de Réplica , Animales , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , ADN/química , ADN/genética , ADN/metabolismo , Replicación del ADN/fisiología , Humanos , Unión Proteica , Virus/genética , Virus/metabolismo
19.
Nature ; 478(7368): 209-13, 2011 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-21964332

RESUMEN

Many replication initiators form higher-order oligomers that process host replication origins to promote replisome formation. In addition to dedicated duplex-DNA-binding domains, cellular initiators possess AAA+ (ATPases associated with various cellular activities) elements that drive functions ranging from protein assembly to origin recognition. In bacteria, the AAA+ domain of the initiator DnaA has been proposed to assist in single-stranded DNA formation during origin melting. Here we show crystallographically and in solution that the ATP-dependent assembly of Aquifex aeolicus DnaA into a spiral oligomer creates a continuous surface that allows successive AAA+ domains to bind and extend single-stranded DNA segments. The mechanism of binding is unexpectedly similar to that of RecA, a homologous recombination factor, but it differs in that DnaA promotes a nucleic acid conformation that prevents pairing of a complementary strand. These findings, combined with strand-displacement assays, indicate that DnaA opens replication origins by a direct ATP-dependent stretching mechanism. Comparative studies reveal notable commonalities between the approach used by DnaA to engage DNA substrates and other, nucleic-acid-dependent, AAA+ systems.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Conformación de Ácido Nucleico , Origen de Réplica , Secuencia Rica en At , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/química , Biocatálisis , Cristalografía por Rayos X , Replicación del ADN , ADN Bacteriano/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/química , ADN Polimerasa Dirigida por ADN/metabolismo , Modelos Moleculares , Conformación Molecular , Complejos Multienzimáticos/metabolismo , Desnaturalización de Ácido Nucleico , Rec A Recombinasas/química , Origen de Réplica/genética , Especificidad por Sustrato
20.
J Biol Chem ; 285(36): 28229-39, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20595381

RESUMEN

The initiation of DNA replication requires the melting of chromosomal origins to provide a template for replisomal polymerases. In bacteria, the DnaA initiator plays a key role in this process, forming a large nucleoprotein complex that opens DNA through a complex and poorly understood mechanism. Using structure-guided mutagenesis, biochemical, and genetic approaches, we establish an unexpected link between the duplex DNA-binding domain of DnaA and the ability of the protein to both self-assemble and engage single-stranded DNA in an ATP-dependent manner. Intersubunit cross-talk between this domain and the DnaA ATPase region regulates this link and is required for both origin unwinding in vitro and initiator function in vivo. These findings indicate that DnaA utilizes at least two different oligomeric conformations for engaging single- and double-stranded DNA, and that these states play distinct roles in controlling the progression of initiation.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Replicación del ADN , ADN Bacteriano/biosíntesis , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Modelos Moleculares , Mutagénesis , Mutación , Regiones Promotoras Genéticas/genética , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...