Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 15(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37345078

RESUMEN

Recurrence is a critical aspect of breast cancer (BC) that is inexorably tied to mortality. Reuse of healthcare data through Machine Learning (ML) algorithms offers great opportunities to improve the stratification of patients at risk of cancer recurrence. We hypothesized that combining features from structured and unstructured sources would provide better prediction results for 5-year cancer recurrence than either source alone. We collected and preprocessed clinical data from a cohort of BC patients, resulting in 823 valid subjects for analysis. We derived three sets of features: structured information, features from free text, and a combination of both. We evaluated the performance of five ML algorithms to predict 5-year cancer recurrence and selected the best-performing to test our hypothesis. The XGB (eXtreme Gradient Boosting) model yielded the best performance among the five evaluated algorithms, with precision = 0.900, recall = 0.907, F1-score = 0.897, and area under the receiver operating characteristic AUROC = 0.807. The best prediction results were achieved with the structured dataset, followed by the unstructured dataset, while the combined dataset achieved the poorest performance. ML algorithms for BC recurrence prediction are valuable tools to improve patient risk stratification, help with post-cancer monitoring, and plan more effective follow-up. Structured data provides the best results when fed to ML algorithms. However, an approach based on natural language processing offers comparable results while potentially requiring less mapping effort.

2.
Comput Methods Programs Biomed ; 231: 107373, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36720187

RESUMEN

Personalized support and assistance are essential for cancer survivors, given the physical and psychological consequences they have to suffer after all the treatments and conditions associated with this illness. Digital assistive technologies have proved to be effective in enhancing the quality of life of cancer survivors, for instance, through physical exercise monitoring and recommendation or emotional support and prediction. To maximize the efficacy of these techniques, it is challenging to develop accurate models of patient trajectories, which are typically fed with information acquired from retrospective datasets. This paper presents a Machine Learning-based survival model embedded in a clinical decision system architecture for predicting cancer survivors' trajectories. The proposed architecture of the system, named PERSIST, integrates the enrichment and pre-processing of clinical datasets coming from different sources and the development of clinical decision support modules. Moreover, the model includes detecting high-risk markers, which have been evaluated in terms of performance using both a third-party dataset of breast cancer patients and a retrospective dataset collected in the context of the PERSIST clinical study.


Asunto(s)
Neoplasias de la Mama , Sistemas de Apoyo a Decisiones Clínicas , Humanos , Femenino , Calidad de Vida , Neoplasias de la Mama/diagnóstico , Estudios Retrospectivos , Aprendizaje Automático
3.
Sensors (Basel) ; 21(23)2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34884136

RESUMEN

This study introduces machine learning predictive models to predict the future values of the monitored vital signs of COVID-19 ICU patients. The main vital sign predictors include heart rate, respiration rate, and oxygen saturation. We investigated the performances of the developed predictive models by considering different approaches. The first predictive model was developed by considering the following vital signs: heart rate, blood pressure (systolic, diastolic and mean arterial, pulse pressure), respiration rate, and oxygen saturation. Similar to the first approach, the second model was developed using the same vital signs, but it was trained and tested based on a leave-one-subject-out approach. The third predictive model was developed by considering three vital signs: heart rate (HR), respiration rate (RR), and oxygen saturation (SpO2). The fourth model was a leave-one-subject-out model for the three vital signs. Finally, the fifth predictive model was developed based on the same three vital signs, but with a five-minute observation rate, in contrast with the aforementioned four models, where the observation rate was hourly to bi-hourly. For the five models, the predicted measurements were those of the three upcoming observations (on average, three hours ahead). Based on the obtained results, we observed that by limiting the number of vital sign predictors (i.e., three vital signs), the prediction performance was still acceptable, with the average mean absolute percentage error (MAPE) being 12%,5%, and 21.4% for heart rate, oxygen saturation, and respiration rate, respectively. Moreover, increasing the observation rate could enhance the prediction performance to be, on average, 8%,4.8%, and 17.8% for heart rate, oxygen saturation, and respiration rate, respectively. It is envisioned that such models could be integrated with monitoring systems that could, using a limited number of vital signs, predict the health conditions of COVID-19 ICU patients in real-time.


Asunto(s)
COVID-19 , Saturación de Oxígeno , Humanos , Unidades de Cuidados Intensivos , SARS-CoV-2 , Signos Vitales
4.
Sensors (Basel) ; 20(22)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33218084

RESUMEN

In this prospective, interventional, international study, we investigate continuous monitoring of hospitalised patients' vital signs using wearable technology as a basis for real-time early warning scores (EWS) estimation and vital signs time-series prediction. The collected continuous monitored vital signs are heart rate, blood pressure, respiration rate, and oxygen saturation of a heterogeneous patient population hospitalised in cardiology, postsurgical, and dialysis wards. Two aspects are elaborated in this study. The first is the high-rate (every minute) estimation of the statistical values (e.g., minimum and mean) of the vital signs components of the EWS for one-minute segments in contrast with the conventional routine of 2 to 3 times per day. The second aspect explores the use of a hybrid machine learning algorithm of kNN-LS-SVM for predicting future values of monitored vital signs. It is demonstrated that a real-time implementation of EWS in clinical practice is possible. Furthermore, we showed a promising prediction performance of vital signs compared to the most recent state of the art of a boosted approach of LSTM. The reported mean absolute percentage errors of predicting one-hour averaged heart rate are 4.1, 4.5, and 5% for the upcoming one, two, and three hours respectively for cardiology patients. The obtained results in this study show the potential of using wearable technology to continuously monitor the vital signs of hospitalised patients as the real-time estimation of EWS in addition to a reliable prediction of the future values of these vital signs is presented. Ultimately, both approaches of high-rate EWS computation and vital signs time-series prediction is promising to provide efficient cost-utility, ease of mobility and portability, streaming analytics, and early warning for vital signs deterioration.


Asunto(s)
Puntuación de Alerta Temprana , Monitoreo Fisiológico , Signos Vitales , Dispositivos Electrónicos Vestibles , Hospitalización , Humanos , Oxígeno/sangre , Estudios Prospectivos , Frecuencia Respiratoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA