Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 14(9)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39337880

RESUMEN

The Ediacaran of eastern Newfoundland preserves the world's oldest known eumetazoan body fossils, as well as the earliest known record of fossilized muscular tissue. Re-examination of the holotype of the eight-armed Haootia quadriformis in terms of its morphology, the arrangement of its muscle filament bundles, and hitherto undescribed aspects of its anatomy support its interpretation as a crown staurozoan. We also document several new fossils preserving muscle tissue with a different muscular architecture to Haootia, but with only four arms. This new material allows us to describe a new crown group staurozoan, Mamsetia manunis gen. et sp. nov. This work confirms the presence of crown group medusozoan cnidarians of the Staurozoa in the Ediacaran of Newfoundland circa 565 Ma.

2.
Plant Biol (Stuttg) ; 17(2): 466-73, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25213550

RESUMEN

Many mosses of the family Splachnaceae are entomophilous and rely on flies for spore dispersal. Splachnum ampullaceum produces a yellow- or pink-coloured hypophysis that releases volatile compounds, attracting flies to the mature moss. The biosynthetic sources of the visual and aromatic cues within the hypophysis have not been identified, and may be either symbiotic cyanobacteria or chromoplasts that break down lipids into volatile compounds. Here, we used transmission electron microscopy and gas chromatography-mass spectrometry (GC-MS) to investigate the sources of these attractants, focusing on different tissues and stages of maturation. Microscopy revealed an abundance of plastids within the hypophysis, while no symbiotic bacteria were observed. During plant maturation, plastids differentiated from amyloplasts with large starch granules to photosynthetic chloroplasts and finally to chromoplasts with lipid accumulations. We used GC-MS to identify over 50 volatile organic compounds from mature sporophytes including short-chain oxygenated compounds, unsaturated irregular terpenoids, fatty acid-derived 6- and 8-carbon alcohols and ketones, and the aromatic compounds acetophenone and p-cresol. The hypophysis showed localised production of pungent volatiles, mainly short-chain fermentation compounds and p-cresol. Some of these volatiles have been shown to be produced from lipid oxidase degradation of linolenic acid within chromoplasts. However, other compounds (such as cyclohexanecarboxylic acid esters) may have a microbial origin. Further investigation is necessary to identify the origin of fly attractants in these mosses.


Asunto(s)
Bryopsida/crecimiento & desarrollo , Plastidios/química , Compuestos Orgánicos Volátiles/análisis , Alcoholes/análisis , Bryopsida/química , Cresoles/análisis , Cromatografía de Gases y Espectrometría de Masas , Microscopía Electrónica de Transmisión , Odorantes/análisis , Plastidios/ultraestructura , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA