Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genetics ; 213(3): 911-922, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31484689

RESUMEN

The conserved RNA helicase Vasa is required for germ cell development in many organisms. In Drosophila melanogaster loss of PIWI-interacting RNA pathway components, including Vasa, causes Chk2-dependent oogenesis arrest. However, whether the arrest is due to Chk2 signaling at a specific stage and whether continuous Chk2 signaling is required for the arrest is unknown. Here, we show that absence of Vasa during the germarial stages causes Chk2-dependent oogenesis arrest. Additionally, we report the age-dependent decline of the ovariole number both in flies lacking Vasa expression only in the germarium and in loss-of-function vasa mutant flies. We show that Chk2 activation exclusively in the germarium is sufficient to interrupt oogenesis and to reduce ovariole number in aging flies. Once induced in the germarium, Chk2-mediated arrest of germ cell development cannot be overcome by restoration of Vasa or by downregulation of Chk2 in the arrested egg chambers. These findings, together with the identity of Vasa-associated proteins identified in this study, demonstrate an essential role of the helicase in the germ cell lineage maintenance and indicate a function of Vasa in germline stem cell homeostasis.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Drosophila/metabolismo , Homeostasis , Oogénesis , Animales , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , ARN Helicasas DEAD-box/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Mutación con Pérdida de Función , Oogonios/citología , Oogonios/metabolismo
2.
Life Sci Alliance ; 1(5): e201800179, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30456388

RESUMEN

The Piwi-interacting RNA pathway functions in transposon control in the germline of metazoans. The conserved RNA helicase Vasa is an essential Piwi-interacting RNA pathway component, but has additional important developmental functions. Here, we address the importance of Vasa-dependent transposon control in the Drosophila female germline and early embryos. We find that transient loss of vasa expression during early oogenesis leads to transposon up-regulation in supporting nurse cells of the fly egg-chamber. We show that elevated transposon levels have dramatic consequences, as de-repressed transposons accumulate in the oocyte where they cause DNA damage. We find that suppression of Chk2-mediated DNA damage signaling in vasa mutant females restores oogenesis and egg production. Damaged DNA and up-regulated transposons are transmitted from the mother to the embryos, which sustain severe nuclear defects and arrest development. Our findings reveal that the Vasa-dependent protection against selfish genetic elements in the nuage of nurse cell is essential to prevent DNA damage-induced arrest of embryonic development.

3.
Cell Rep ; 22(7): 1861-1874, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29444437

RESUMEN

The maintenance of eukaryotic genome stability is ensured by the interplay of transcriptional as well as post-transcriptional mechanisms that control recombination of repeat regions and the expression and mobility of transposable elements. We report here that mutations in two (cytosine-5) RNA methyltransferases, Dnmt2 and NSun2, impact the accumulation of mobile element-derived sequences and DNA repeat integrity in Drosophila. Loss of Dnmt2 function caused moderate effects under standard conditions, while heat shock exacerbated these effects. In contrast, NSun2 function affected mobile element expression and genome integrity in a heat shock-independent fashion. Reduced tRNA stability in both RCMT mutants indicated that tRNA-dependent processes affected mobile element expression and DNA repeat stability. Importantly, further experiments indicated that complex formation with RNA could also contribute to the impact of RCMT function on gene expression control. These results thus uncover a link between tRNA modification enzymes, the expression of repeat DNA, and genomic integrity.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Inestabilidad Genómica , Secuencias Repetitivas Esparcidas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Biocatálisis , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Femenino , Silenciador del Gen , Sitios Genéticos , Respuesta al Choque Térmico/genética , Masculino , Estabilidad del ARN , ARN de Transferencia/genética , Transcriptoma/genética , Cromosoma Y/genética
4.
Bioessays ; 35(12): 1044-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24019003

RESUMEN

Many species maintain cytosine DNA methyltransferase (MTase) genes belonging to the Dnmt2 family. Prokaryotic modification-restriction systems utilize DNA methylation to distinguish between self and foreign DNA, and cytosine methylation in eukaryotic DNA contributes to epigenetic mechanisms that control gene expression. However, Dnmt2 proteins display only low or no DNA MTase activity, making this protein family the odd and enigmatic family member. Recent evidence showed that Dnmt2 proteins are not DNA but RNA MTases with functions in biological processes as diverse as stress responses and RNA-mediated inheritance. These observations not only raise profound questions regarding the perceived substrate specificities of cytosine MTase, but also suggest links between DNA and RNA modification systems. Here, we speculate that Dnmt2 proteins might be part of an ancient cytosine modification toolbox that is used to successfully respond to environmental challenges, including constantly evolving RNA and DNA substrates.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Animales , Citosina/metabolismo , ADN/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , Metilación de ADN/fisiología , Humanos , ARN/genética
5.
Cell Rep ; 4(5): 931-7, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24012760

RESUMEN

Transfer RNA (tRNA) fragmentation in response to stress conditions has been described in many organisms. tRNA fragments have been found in association with small interfering RNA (siRNA) components, but the biological role of these interactions remains unclear. We report here that the tRNA methyltransferase Dnmt2 is essential for efficient Dicer-2 (Dcr-2) function in Drosophila. Using small RNA (sRNA) sequencing, we confirmed that Dnmt2 limits the extent of tRNA fragmentation during the heat-shock response. tRNAs as well as tRNA fragments serve as Dcr-2 substrates, and Dcr-2 degrades tRNA-derived sequences, especially under heat-shock conditions. tRNA-derived RNAs are able to inhibit Dcr-2 activity on long double-stranded RNAs (dsRNAs). Consequently, heat-shocked Dnmt2 mutant animals accumulate dsRNAs, produce fewer siRNAs, and show misregulation of siRNA pathway-dependent genes. These results reveal the impact of tRNA fragmentation on siRNA pathways and implicate tRNA modifications in the regulation of sRNA homeostasis during the heat-shock response.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/enzimología , Drosophila/genética , ARN Interferente Pequeño/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , Expresión Génica , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
6.
EMBO Rep ; 14(3): 269-75, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23370384

RESUMEN

Drosophila use small-interfering RNA mechanisms to limit the amplification of viral genomes. However, it is unclear how small RNA interference components recognize and separate viral from cellular RNA. Dnmt2 enzymes are highly conserved RNA methyltransferases with substrate specificity towards cellular tRNAs. We report here that Dnmt2 is required for efficient innate immune responses in Drosophila. Dnmt2 mutant flies accumulate increasing levels of Drosophila C virus and show activated innate immune responses. Binding of Dnmt2 to DCV RNA suggests that Dnmt2 contributes to virus control directly, possibly by RNA methylation. These observations demonstrate a role for Dnmt2 in antiviral defence.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/virología , Virus de Insectos/patogenicidad , ARN Viral/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , Drosophila/inmunología , Proteínas de Drosophila/genética , Inmunidad Innata/genética , Virus de Insectos/metabolismo , Metilación , Mutación , Unión Proteica
7.
Bioessays ; 35(4): 323-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23315679

RESUMEN

Endonuclease-mediated tRNA fragmentation has been observed in many species suggesting functional importance for tRNA fragments. The size distribution of tRNA-derived fragments indicates the existence of mechanisms that protect tRNAs and their fragments from total degradation by exonucleases. Could post-transcriptional modifications be important for the controlled processing of tRNAs?


Asunto(s)
Conformación de Ácido Nucleico , ARN de Transferencia/química , ARN de Transferencia/genética , Estrés Fisiológico/genética , Humanos , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...