Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
In Vivo ; 36(3): 1236-1244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35478102

RESUMEN

BACKGROUND/AIM: We have previously shown that the water extract of Agrimonia eupatoria L. (AE) is a valuable source of polyphenols with excellent antioxidant properties and has clinical potential for the prevention and/or adjuvant therapy of cardiovascular complications associated with diabetes. Inspired by our previously published data, in the present study we examined whether AE improves skin wound healing in a series of in vitro and in vivo experiments. MATERIALS AND METHODS: In detail, we investigated the ability of the AE extract to induce fibroblast to myofibroblast conversion, extracellular matrix (ECM) deposition, and keratinocyte proliferation/differentiation, in vitro. In parallel, in an animal model, we measured wound tensile strength (TS) and assessed the progression of open wounds using basic histology and immunofluorescence. RESULTS: The AE extract induced the myofibroblast-like phenotype and enhanced ECM deposition, both in vitro and in vivo. Furthermore, the wound TS of skin incisions and the contraction rates of open excisions were significantly increased in the AE-treated group. CONCLUSION: The present data show that AE water extract significantly improves the healing of open and sutured skin wounds. Therefore, our data warrant further testing in animal models that are physiologically and evolutionarily closer to humans.


Asunto(s)
Agrimonia , Animales , Modelos Animales de Enfermedad , Fibroblastos , Queratinocitos , Extractos Vegetales/farmacología , Ratas , Agua , Cicatrización de Heridas
2.
Molecules ; 25(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331226

RESUMEN

The ability of horse chestnut extract (HCE) to induce contraction force in fibroblasts, a process with remarkable significance in skin repair, motivated us to evaluate its wound healing potential in a series of experiments. In the in vitro study of the ability of human dermal fibroblasts to form myofibroblast-like cells was evaluated at the protein level (Western blot and immunofluorescence). The in vivo study was conducted on male Sprague-Dawley rats with inflicted wounds (one open circular and one sutured incision) on their backs. Rats were topically treated with two tested HCE concentrations (0.1% and 1%) or sterile water. The control group remained untreated. The incisions were processed for wound tensile strength (TS) measurement whereas the open wounds were subjected to histological examination. On the in vitro level the HCE extract induced fibronectin-rich extracellular matrix formation, but did not induced α-smooth muscle actin (SMA) expression in dermal fibroblasts. The animal study revealed that HCE increased wound TS and improved collagen organization. In conclusion, the direct comparison of both basic wound models demonstrated that the healing was significantly increased following HCE, thus this extract may be found useful to improve healing of acute wounds. Nevertheless, the use of an experimental rat model warrants a direct extrapolation to the human clinical situation.


Asunto(s)
Aesculus/química , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Extractos Vegetales/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Cromatografía Líquida de Alta Presión , Estructura Molecular , Extractos Vegetales/química , Ratas , Regeneración , Resistencia a la Tracción
3.
Int J Mol Med ; 37(1): 21-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26397183

RESUMEN

Estrogen deprivation is considered responsible for many age-related processes, including poor wound healing. Guided by previous observations that estradiol accelerates re­epithelialization through estrogen receptor (ER)­ß, in the present study, we examined whether selective ER agonists [4,4',4''-(4-propyl [1H] pyrazole-1,3,5-triyl)­trisphenol (PPT), ER­α agonist; 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), ER­ß agonist] affect the expression of basic proliferation and differentiation markers (Ki­67, keratin­10, ­14 and ­19, galectin­1 and Sox­2) of keratinocytes using HaCaT cells. In parallel, ovariectomized rats were treated daily with an ER modulator, and wound tissue was removed 21 days after wounding and routinely processed for basic histological analysis. Our results revealed that the HaCaT keratinocytes expressed both ER­α and ­ß, and thus are well-suited for studying the effects of ER agonists on epidermal regeneration. The activation of ER­α produced a protein expression pattern similar to that observed in the control culture, with a moderate expression of Ki­67 being observed. However, the activation of ER­ß led to an increase in cell proliferation and keratin­19 expression, as well as a decrease in galectin­1 expression. Fittingly, in rat wounds treated with the ER­ß agonist (DPN), epidermal regeneration was accelerated. In the present study, we provide information on the mechanisms through which estrogens affect the expression patterns of selected markers, thus modulating keratinocyte proliferation and differentiation; in addition, we demonstrate that the pharmacological activation of ER-α and -ß has a direct impact on wound healing.


Asunto(s)
Receptor alfa de Estrógeno/agonistas , Receptor beta de Estrógeno/agonistas , Queratinocitos/efectos de los fármacos , Nitrilos/farmacología , Fenoles/farmacología , Pirazoles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Femenino , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Queratinocitos/patología , Ratas Sprague-Dawley , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología
4.
J Pharm Pharmacol ; 67(1): 117-25, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25244603

RESUMEN

OBJECTIVES: Although the exact underlying mechanisms are still unknown, Plantago lanceolata L. (PL) water extracts are frequently used to stimulate wound healing and to drain abscesses. Therefore, in this experimental study the effect of PL water extract on skin wound healing was studied in Sprague-Dawley rats. METHODS: Two excisional and one incisional skin wounds were performed on the back of each rat. Wounds were treated for three consecutive days with two different concentrations of the aqueous extract of PL. Rats were sacrificed 7, 14, and 21 days after surgery. Samples of wounds were processed for macroscopic (excisions - wound contraction measurement), biomechanical (incisions - wound tensile strength (TS) measurement) and histological examination (excisions). KEY FINDINGS: It was shown that open wounds treated with PL extract contained myofibroblasts and demonstrated significantly higher contraction rates. Furthermore, significantly increased wound TSs were recorded in treated rats as a consequence of increased organization of extracellular matrix proteins, such as the collagen type 1. CONCLUSIONS: We demonstrated that PL aqueous extract improves skin wound healing in rats. However, further research need to be performed to find optimal therapeutic concentration, and exact underlying mechanism prior obtained results may be introduced into the clinical practice.


Asunto(s)
Miofibroblastos/metabolismo , Extractos Vegetales/farmacología , Plantago , Cicatrización de Heridas/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Masculino , Ratas , Ratas Sprague-Dawley , Resistencia a la Tracción
5.
Aesthetic Plast Surg ; 37(5): 1003-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23722351

RESUMEN

BACKGROUND: It has been shown that estrogens have a protective effect with regard to tissue ischemia. Therefore, in this macroscopic and histological investigation, the effect of estradiol benzoate on skin flap viability was studied in sham-operated and ovariectomized Sprague-Dawley rats. METHODS: Three months prior to flap surgery a group of rats underwent ovariectomy, while the remaining animals underwent a sham operation. Subsequently, all rats had a 2 × 8-cm skin flap created on the dorsum. Rats were randomly divided into estradiol- or saline-treated groups. Treatment started either on the day of flap excision or 3 days prior to the surgery. RESULTS: Our results showed that administration of estradiol benzoate prior to and after flap surgery significantly decreases skin flap necrosis in both sham-operated and ovariectomized rats, with the highest survival rate in animals where treatment started 3 days prior to flap surgery. CONCLUSION: In conclusion, the observed protective effect of estradiol on skin flap viability could potentially be applied to plastic and reconstructive surgery in postmenopausal women. Nevertheless, further research is needed to explain the exact underlying mechanism and to find the optimal treatment protocol for human clinical practice.


Asunto(s)
Estradiol/análogos & derivados , Colgajos Quirúrgicos , Supervivencia Tisular/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Estradiol/farmacología , Terapia de Reemplazo de Estrógeno , Femenino , Necrosis , Ovariectomía , Ratas , Ratas Sprague-Dawley , Colgajos Quirúrgicos/irrigación sanguínea , Colgajos Quirúrgicos/patología , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...