Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Rep ; 46(6): 5897-5908, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31410688

RESUMEN

Phenylketonuria (PKU) is a metabolic disorder accumulating phenylalanine (Phe) and its metabolites in plasma and tissues of the patients. Regardless of the mechanisms, which Phe causes brain impairment, are poorly understood, energy deficit may have linked to the neurotoxicity in PKU. It is widely recognized that creatine is involved in maintaining of cerebral energy homeostasis. Because of this, in a previous work, we incorporated it into liposomes and this increased the concentration of creatine in the cerebral cortex. Here, we examined the effect of creatine nanoliposomes on parameters of oxidative stress, enzymes of phosphoryl transfer network, and activities of the mitochondrial respiratory chain complexes (RCC) in the cerebral cortex of young rats chemically induced hyperphenylalaninemia (HPA). HPA was induced with L-phenylalanine (5.2 µmol/g body weight; twice a day; s.c.), and phenylalanine hydroxylase inhibitor, α-methylphenylalanine (2.4 µmol/g body weight; once a day; i.p.), from the 7th to the 19th day of life. HPA reduced the activities of pyruvate kinase, creatine kinase, and complex II + III of RCC in the cerebral cortex. Creatine nanoliposomes prevented the inhibition of the activities of the complexes II + III, caused by HPA, and changes oxidative profile in the cerebral cortex. Considering the importance of the mitochondrial respiratory chain for brain energy production, our results suggesting that these nanoparticles protect against neurotoxicity caused by HPA, and can be viable candidates for treating patients HPA.


Asunto(s)
Creatina/metabolismo , Liposomas/metabolismo , Fenilcetonurias/metabolismo , Animales , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Creatina/fisiología , Creatina Quinasa/metabolismo , Metabolismo Energético , Femenino , Hipocampo/metabolismo , Masculino , Nanopartículas/uso terapéutico , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Fenilalanina/metabolismo , Ratas , Ratas Wistar
2.
J Neurotrauma ; 36(14): 2246-2259, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30794079

RESUMEN

Traumatic brain injury (TBI) increases Ca2+ influx into neurons and desynchronizes mitochondrial function leading to energy depletion and apoptosis. This process may be influenced by brain testosterone (TS) levels, which are known to decrease after TBI. We hypothesized that a TS-based therapy could preserve mitochondrial neuroenergetics after TBI, thereby reducing neurodegeneration. C57BL/6J mice were submitted to sham treatment or severe parasagittal controlled cortical impact (CCI) and were subcutaneously injected with either vehicle (VEH-SHAM and VEH-CCI) or testosterone cypionate (15 mg/kg, TS-CCI) for 10 days. Cortical tissue homogenates ipsilateral to injury were used for neurochemical analysis. The VEH-CCI group displayed an increased Ca2+-induced mitochondrial swelling after the addition of metabolic substrates (pyruvate, malate, glutamate, succinate, and adenosine diphosphate [PMGSA]). The addition of Na+ stimulated mitochondrial Ca2+ extrusion through Na+/Ca2+/Li+ exchanger (NCLX) in VEH-SHAM and TS-CCI, but not in the VEH-CCI group. Reduction in Ca2+ efflux post-injury was associated with impaired mitochondrial membrane potential formation/dissipation, and decreased mitochondrial adenosine triphosphate (ATP)-synthase coupling efficiency. Corroborating evidence of mitochondrial uncoupling was observed with an increase in H2O2 production post-injury, but not in superoxide dismutase (SOD2) protein levels. TS administration significantly reduced these neuroenergetic alterations. At molecular level, TS prevented the increase in pTauSer396 and alpha-Spectrin fragmentation by the Ca2+dependent calpain-2 activation, and decreased both caspase-3 activation and Bax/BCL-2 ratio, which suggests a downregulation of mitochondrial apoptotic signals. Search Tool for the Retrieval of Interacting Genes/Proteins database provided two distinct gene/protein clusters, "upregulated and downregulated," interconnected through SOD2. Therefore, TS administration after a severe CCI improves the mitochondrial Ca2+extrusion through NCLX exchanger and ATP synthesis efficiency, ultimately downregulating the overexpression of molecular drivers of neurodegeneration.


Asunto(s)
Andrógenos/farmacología , Lesiones Traumáticas del Encéfalo/patología , Mitocondrias/efectos de los fármacos , Degeneración Nerviosa/patología , Testosterona/análogos & derivados , Animales , Masculino , Ratones Endogámicos C57BL , Mitocondrias/patología , Distribución Aleatoria , Testosterona/farmacología
3.
Metab Brain Dis ; 25(2): 145-54, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20431931

RESUMEN

5-Oxoproline accumulates in glutathione synthetase deficiency, an autossomic recessive inherited disorder clinically characterized by hemolytic anemia, metabolic acidosis, and severe neurological symptoms whose mechanisms are poorly known. In the present study we investigated the effects of acute subcutaneous administration of 5-oxoproline to verify whether oxidative stress is elicited by this metabolite in vivo in cerebral cortex and cerebellum of 14-day-old rats. Our results showed that the acute administration of 5-oxoproline is able to promote both lipid and protein oxidation, to impair brain antioxidant defenses, to alter SH/SS ratio and to enhance hydrogen peroxide content, thus promoting oxidative stress in vivo, a mechanism that may be involved in the neuropathology of gluthatione synthetase deficiency.


Asunto(s)
Antioxidantes/metabolismo , Encefalopatías Metabólicas Innatas/inducido químicamente , Cerebelo/efectos de los fármacos , Cerebro/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ácido Pirrolidona Carboxílico/toxicidad , Factores de Edad , Animales , Antioxidantes/fisiología , Encefalopatías Metabólicas Innatas/metabolismo , Cerebelo/metabolismo , Cerebro/metabolismo , Modelos Animales de Enfermedad , Glutatión Sintasa/deficiencia , Peroxidación de Lípido/fisiología , Proteínas del Tejido Nervioso/fisiología , Estrés Oxidativo/fisiología , Ácido Pirrolidona Carboxílico/metabolismo , Ratas , Ratas Wistar
4.
Pediatr Nephrol ; 22(8): 1121-8, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17534668

RESUMEN

Cystinosis is a systemic genetic disease caused by a lysosomal transport deficiency accumulating cystine in most tissues. Although tissue damage might depend on cystine accumulation, the mechanisms of tissue damage are not fully understood. Studies performed in fibroblasts of cystinotic patients and in kidney cells loaded with cystine dimethyl ester (CDME) suggest that apoptosis is enhanced in this disease. Considering that oxidative stress is a known apoptosis inducer, our main objective was to investigate the effects of CDME loading on several parameters of oxidative stress in the kidney of young rats. Animals were injected twice a day with 1.6 micromol/g body weight CDME and/or 0.26 micromol/g body weight cysteamine (CSH) from the 16th to the 20th postpartum day and killed after 1 or 12 h. CDME induced lipoperoxidation and protein carbonylation and stimulated superoxide dismutase, glutathione peroxidase (GPx), and catalase activities, probably through the formation of superoxide anions, hydrogen peroxide, and hydroxyl free radicals. Coadministration of CSH, the drug used to treat cystinotic patients, prevented, at least in part, those effects, possibly acting as a scavenger of free radicals. These results suggest that the induction of oxidative stress might be one of the mechanisms leading to tissue damage in cystinotic patients.


Asunto(s)
Cistina/análogos & derivados , Cistinosis/etiología , Riñón/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Catalasa/metabolismo , Cisteamina/administración & dosificación , Cisteamina/farmacología , Cistina/administración & dosificación , Cistina/toxicidad , Cistinosis/genética , Cistinosis/patología , Interacciones Farmacológicas , Fluoresceínas/metabolismo , Glutatión Peroxidasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Oxidación-Reducción , Proteínas/análisis , Distribución Aleatoria , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis
5.
Arch Med Res ; 38(2): 164-9, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17227724

RESUMEN

BACKGROUND: Cystinosis is an autosomal recessive disorder associated with lysosomal cystine accumulation caused by defective cystine efflux. Visual deficit is a possible consequence of cystine accumulation in cornea and retina. Fibroblasts from cystinotic patients present ATP deficit with intact mitochondrial energy-generating capacity by an unknown mechanism. Considering that creatine kinase is a thiol enzyme crucial for energy homeostasis in retina, and disulfides like cystine may alter thiol enzymes, the main objective of the present study was to investigate the effect of cystine and cysteamine, the drug used for treatment of cystinotic patients, on creatine kinase activity in cytosolic and mitochondrial fractions of the retina from adult pigs. METHODS: Retina was isolated from 6-month-old Landrace pigs, homogenized and mitochondrial and cytosolic fractions separated by centrifugation. Cytosolic and mitochondrial creatine kinase activities were determined in the presence of different concentrations of cystine and/or cysteamine. RESULTS: Cystine inhibited the enzyme activity in a dose- and time-dependent manner and cysteamine prevented and reversed the inhibition caused by cystine, suggesting that cystine inhibits creatine kinase activity by oxidation of the sulfhydryl groups of the enzyme. CONCLUSIONS: Considering that creatine kinase is a crucial enzyme for retina energy homeostasis, in case cystine leaves lysosome these results provide a possible mechanism for cystine toxicity and also another beneficial effect for the use of cysteamine in patients with cystinosis.


Asunto(s)
Creatina Quinasa/antagonistas & inhibidores , Cistina/toxicidad , Cistinosis/enzimología , Cistinosis/etiología , Retina/efectos de los fármacos , Animales , Fraccionamiento Celular , Masculino , Retina/enzimología , Sus scrofa
6.
Cell Mol Neurobiol ; 27(1): 147-60, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17151944

RESUMEN

Growing evidence indicates that some metabolites derived from the kynurenine pathway, the major route of L-tryptophan catabolism, are involved in the neurotoxicity associated with several brain disorders, such as Huntington's disease, Parkinson's disease and Alzheimer's disease, as well as in glutaryl-CoA dehydrogenase deficiency (GAI). Considering that the pathophysiology of the brain damage in these neurodegenerative disorders is not completely defined, in the present study, we investigated the in vitro effect of L-kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3HK), 3-hydroxyanthranilic acid (3HA) and anthranilic acid (AA) on some parameters of energy metabolism, namely glucose uptake, 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate, as well as on the activities of the respiratory chain complexes I-IV and Na+,K+-ATPase activity in cerebral cortex from 30-day-old rats. We observed that all compounds tested, except L-kynurenine, significantly increased glucose uptake and inhibited 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate. In addition, the activities of complexes I, II and IV of the respiratory chain were significantly inhibited by 3HK, while 3HA inhibited complexes I and II activities and AA inhibited complexes I-III activities. Moreover, Na+,K+-ATPase activity was not modified by these kynurenines. Taken together, our present data provide evidence that various kynurenine intermediates provoke impairment of brain energy metabolism.


Asunto(s)
Corteza Cerebral/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Quinurenina/análogos & derivados , Quinurenina/farmacología , Ácido 3-Hidroxiantranílico/farmacología , Animales , Dióxido de Carbono/metabolismo , Corteza Cerebral/metabolismo , Transporte de Electrón/efectos de los fármacos , Glucosa/metabolismo , Ácido Quinurénico/farmacología , Ratas , Ratas Wistar , ortoaminobenzoatos/farmacología
7.
Brain Res ; 1030(1): 141-51, 2004 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-15567346

RESUMEN

Patients affected by medium-chain acyl CoA dehydrogenase (MCAD) deficiency, a frequent inborn error of metabolism, suffer from acute episodes of encephalopathy. However, the mechanisms underlying the neuropathology of this disease are poorly known. In the present study, we investigated the in vitro effect of the medium-chain fatty acids (MCFA), at concentrations varying from 0.01 to 3 mM, accumulating in MCAD deficiency on some parameters of energy metabolism in cerebral cortex of young rats. (14)CO(2) production from [U(14)] glucose, [1-(14)C] acetate and [1,5-(14)C] citrate was evaluated by incubating cerebral cortex homogenates from 30-day-old rats in the absence (controls) or presence of octanoic acid, decanoic acid or cis-4-decenoic acid. OA and DA significantly reduced (14)CO(2) production from acetate by around 30-40%, and from glucose by around 70%. DA significantly reduced (14)CO(2) production from citrate by around 40%, while OA did not affect this parameter. cDA inhibited (14)CO(2) production from all tested substrates by around 30-40%. The activities of the respiratory chain complexes and of creatine kinase were also tested in the presence of DA and cDA. Both metabolites significantly inhibited cytochrome c oxidase activity (by 30%) and complex II-III activity (DA, 25%; cDA, 80%). Furthermore, only cDA inhibited complex II activity (by 30%), while complex I-III and citrate synthase were not affected by these MCFA. On the other hand, only cDA reduced the activity of creatine kinase in total homogenates, as well as in mitochondrial and cytosolic fractions from cerebral cortex (by 50%). The data suggest that the major metabolites which accumulate in MCAD deficiency, with particular emphasis to cDA, compromise brain energy metabolism. We presume that these findings may contribute to the understanding of the pathophysiology of the neurological dysfunction of MCAD deficient patients.


Asunto(s)
Acil-CoA Deshidrogenasa/deficiencia , Corteza Cerebral/metabolismo , Metabolismo Energético/fisiología , Ácidos Grasos/metabolismo , Errores Innatos del Metabolismo Lipídico/metabolismo , Acetatos/metabolismo , Factores de Edad , Animales , Antifúngicos/farmacología , Antihipertensivos/farmacología , Caprilatos/farmacología , Radioisótopos de Carbono , Citrato (si)-Sintasa/metabolismo , Creatina Quinasa/metabolismo , Ácidos Decanoicos/farmacología , Transporte de Electrón/fisiología , Metabolismo Energético/efectos de los fármacos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...