Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Monit Assess ; 192(8): 539, 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32705349

RESUMEN

Microbial communities occur in almost every habitat. To evaluate the homeostasis disruption of in situ microbiomes, dredged sediments from Guanabara Bay-Brazil (GB) were mixed with sediments from outside of the bay (D) in three different proportions (25%, 50%, and 75%) which we called GBD25, GBD50, and GBD75. Grain size, TOC, and metals-as indicators of complex contamination-dehydrogenase (DHA) and esterase enzymes (EST)-as indicators of microbial community availability-were determined. Microbial community composition was addressed by amplifying the 16S rRNA gene for DGGE analysis and sequencing using MiSeq platform (Illumina).We applied the quality ratio index (QR) to the GB, D, and every GBD mixture to integrate geochemical parameters with our microbiome data. QR indicated high environmental risk for GB and every GBD mixture, and low risk for D. The community shifted from aerobic to anaerobic profile, consistent with the characteristics of GB. Sample D was dominated by JTB255 marine benthic group, related to low impacted areas. Milano-WF1B-44 was the most representative of GB, often found in anaerobic and sulfur enriched environments. In GBD, the denitrifying sulfur-oxidizing bacteria, Sulfurovum, was the most representative, typically found in suboxic or anoxic niches. The canonical correspondence analysis was able to explain 60% of the community composition variation and exhibit the decrease of environmental quality as the contamination increases. Physiological and taxonomic shifts of the microbial assemblage in sediments were inferred by QR, which was suitable to determine sediment risk. The study produced sufficient information to improve the dredging plan and management.


Asunto(s)
Sedimentos Geológicos , Microbiota , Bahías , Brasil , Monitoreo del Ambiente , ARN Ribosómico 16S
2.
Front Microbiol ; 9: 3175, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30662434

RESUMEN

The Gulf of Mexico (GoM) is a dynamic marine ecosystem influenced by multiple natural and anthropogenic processes and inputs, such as the intrusion of warm oligotrophic water via the Loop Current, freshwater and nutrient input by the Mississippi River, and hydrocarbon inputs via natural seeps and industrial spills. Microbial plankton communities are important to pelagic food webs including in the GoM but understanding the drivers of the natural dynamics of these passively distributed microorganisms can be challenging in such a large and heterogeneous system. As part of the DEEPEND consortium, we applied high throughput 16S rRNA sequencing to investigate the spatial and temporal dynamics of pelagic microbial plankton related to several environmental conditions during two offshore cruises in 2015. Our results show dramatic community shifts across depths, especially between photic and aphotic zones. Though we only have two time points within a single year, observed temporal shifts in microbial plankton communities were restricted to the seasonally influenced epipelagic zone (0-200 m), and appear mainly driven by changes in temperature. Environmental selection in microbial plankton communities was depth-specific, with variables such as turbidity, salinity, and abundance of photosynthetic taxa strongly correlating with community structure in the epipelagic zone, while variables such as oxygen and specific nutrient concentrations were correlated with community structure at deeper depths.

3.
PeerJ ; 3: e1385, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26587347

RESUMEN

Recent studies have renewed interest in sponge ecology by emphasizing the functional importance of sponges in a broad array of ecosystem services. Many critically important habitats occupied by sponges face chronic stressors that might lead to alterations in their diversity, relatedness, and functional attributes. We addressed whether proximity to human activity might be a significant factor in structuring sponge community composition, as well as potential functional roles, by monitoring sponge diversity and abundance at two structurally similar sites that vary in distance to areas of high coastal development in Bocas Del Toro, Panama. We surveyed sponge communities at each site using belt transects and differences between two sites were compared using the following variables: (1) sponge species richness, Shannon diversity, and inverse Simpson's diversity; (2) phylogenetic diversity; (3) taxonomic and phylogenetic beta diversity; (4) trait diversity and dissimilarity; and (5) phylogenetic and trait patterns in community structure. We observed significantly higher sponge diversity at Punta Caracol, the site most distant from human development (∼5 km). Although phylogenetic diversity was lower at Saigon Bay, the site adjacent to a large village including many houses, businesses, and an airport, the sites did not exhibit significantly different patterns of phylogenetic relatedness in species composition. However, each site had a distinct taxonomic and phylogenetic composition (beta diversity). In addition, the sponge community at Saigon included a higher relative abundance of sponges with high microbial abundance and high chlorophyll a concentration, whereas the community at Punta Caracol had a more even distribution of these traits, yielding a significant difference in functional trait diversity between sites. These results suggest that lower diversity and potentially altered community function might be associated with proximity to human populations. This study highlights the importance of evaluating functional traits and phylogenetic diversity in addition to common diversity metrics when assessing potential environmental impacts on benthic communities.

4.
PeerJ ; 2: e695, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25548731

RESUMEN

Hosting symbionts provides many eukaryotes with access to the products of microbial metabolism that are crucial for host performance. On tropical coral reefs, many (High Microbial Abundance [HMA]) but not all (Low Microbial Abundance [LMA]) marine sponges host abundant symbiont communities. Although recent research has revealed substantial variation in these sponge-microbe associations (termed holobionts), little is known about the ecological implications of this diversity. We investigated the expansion of diverse sponge species across isotopic niche space by calculating niche size (as standard ellipse area [SEA c ]) and assessing the relative placement of common sponge species in bivariate (δ (13)C and δ (15)N) plots. Sponges for this study were collected from the relatively isolated reefs within the Miskito Cays of Honduras. These reefs support diverse communities of HMA and LMA species that together span a gradient of photosymbiont abundance, as revealed by chlorophyll a analysis. HMA sponges occupied unique niche space compared to LMA species, but the placement of some HMA sponges was driven by photosymbiont abundance. In addition, photosymbiont abundance explained a significant portion of the variation in isotope values, suggesting that access to autotrophic metabolism provided by photosymbionts is an important predictor in the location of species within isotopic space. Host identity accounted for over 70% of the variation in isotope values within the Miskito Cays and there was substantial variation in the placement of individual species within isotopic niche space, suggesting that holobiont metabolic diversity may allow taxonomically diverse sponge species to utilize unique sources of nutrients within a reef system. This study provides initial evidence that microbial symbionts allow sponges to expand into novel physiochemical niche space. This expansion may reduce competitive interactions within coral reefs and promote diversification of these communities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA